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On G-Function of Frobenius Manifolds

Related to Hurwitz Spaces

A. Kokotov and D. Korotkin

1 Introduction

We deal with the class of Frobenius manifolds related to Hurwitz spaces of moduli of

meromorphic functions on Riemann surfaces (see [3]).

The key observation in the present paper is the identification of the isomono-

dromic tau-function (see [3, 4, 5, 6]) of this class of Frobenius manifolds with (−1/2)-

power of the Bergmann tau-function which was introduced in [10] in a rather different

context. We show that the quadratic Hamiltonian from [3] coincides (up to a constant)

with the value of the Bergmann projective connection calculated in the natural local

parameter at the critical point of the meromorphic function. This simple observation

enables us to apply the results of [10] and explicitly calculate the isomonodromic tau-

functions of Frobenius manifolds related to the Hurwitz spaces of moduli of meromor-

phic functions on surfaces of genus 0 and 1. This immediately leads to general formulas

for the G-function (see [5, 6]) of the above Frobenius manifolds. We recall that the G-

function of a Frobenius manifold provides a solution of the so-called Getzler equation

(see [6, 8]). For some classes of Frobenius manifolds, it plays the role of a generating

function of Gromov-Witten invariants of algebraic varieties (see [5]). In the general case,

it gives the genus one free energy of Dijkgraaf and Witten and describes first-order de-

formations of dispersionless integrable systems.

As a consequence of our general result, we prove the following formula for the

G-function of the Frobenius manifold C × C
N−1 × {�z > 0}/J(AN−1) which was recently
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344 A. Kokotov and D. Korotkin

conjectured by Strachan [14]:

G = − ln η
(
t0

)
−

N + 1

24
tN. (1.1)

Moreover, using the results of [10], we get the expression for the modulus square of the

isomonodromic tau-function (and, hence, for the real part of the G-function) in case of

Hurwitz spaces in higher genus.

2 Preliminaries

In this section, we briefly outline some basic facts and definitions from the theory of

Frobenius manifolds (see [1, 2, 3, 4, 5, 6, 11, 12]).

2.1 Hurwitz spaces and Frobenius manifolds

Here we mainly follow [3, Lecture 5], departing somewhat from Dubrovin’s original no-

tation. Let Hg,N(k1, . . . , kl) be the Hurwitz space of equivalence classes [p : L → P
1] of

N-fold branched coverings

p : L −→ P
1, (2.1)

where L is a compact Riemann surface of genus g and the holomorphic map p of degree

N is subject to the following conditions:

(i) it has M simple ramification points P1, . . . , PM ∈ L with distinct finite images

λ1, . . . , λM ∈ C ⊂ P
1;

(ii) the preimage p−1(∞) consists of l points: p−1(∞) = {∞1, . . . ,∞l}, and the ram-

ification index of the map p at the point ∞j is kj (1 ≤ kj ≤ N).

(The ramification index at a point is equal to the number of sheets of the covering

which are glued at this point. A point ∞j is a ramification point if and only if kj > 1. A

ramification point is simple if the corresponding ramification index equals 2.)

Notice that k1 + · · · + kl = N and M = 2g + l + N − 2. (The last equality is a

consequence of the Riemann-Hurwitz formula.) Two branched coverings p1 : L1 → P
1

and p2 : L2 → P
1 are called equivalent if there exists a biholomorphic map f : L1 → L2

such that p2f = p1.

The Hurwitz spaces Hg,N(k1, . . . , kl) can also be described as spaces of mero-

morphic functions of degree N on Riemann surfaces of genus g with l poles of orders

k1, . . . , kl and simple critical values.
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G-Function of Frobenius Manifolds Related to Hurwitz Spaces 345

For example, the space H0,N(N) has an equivalent description as the space of

polynomials L = P
1 � z �→ λ(z) ∈ P

1,

λ(z) = zN + a2zN−2 + a3zN−3 + · · · + aN, (2.2)

whereas the space H0,N(k,N−k) (1 ≤ k ≤ N−1) can be described as the space of “trigono-

metric polynomials” L = P
1 � z �→ λ(z) ∈ P

1,

λ(z) = zk + b1zk−1 + · · · + bN

zN−k
, bN �= 0. (2.3)

We assume that the critical values of λ(z) in (2.2) and (2.3) are simple (i.e., the derivative

λ ′(z) has only simple roots and λ(zi) �= λ(zj) for distinct roots z1 and z2 of λ ′(z)).

We also introduce the covering Ĥg,N(k1, . . . , kl) of the space Hg,N(k1, . . . , kl)

consisting of pairs

〈[
p : L −→ P

1
] ∈ Hg,N

(
k1, . . . , kl

)
,

{
aα, bα

}g

α=1

〉
, (2.4)

where {aα, bα}
g
α=1 is a canonical basis of cycles on the Riemann surface L.

Obviously, for g = 0, the spaces H0,N(k1, . . . , kl) and Ĥ0,N(k1, . . . , kl) coincide.

The spaces Hg,N(k1, . . . , kl) and Ĥg,N(k1, . . . , kl) are connected complex manifolds

of dimension M = 2g + l + N − 2 and the local coordinates on these manifolds are given

by the finite critical values of the map p (or, equivalently, the finite branch points of the

covering (2.1)) λ1, . . . , λM.

In [3], the notion of the so-called “primary” differentials on the Riemann surfaces

L was introduced; each primary differential φ defines a structure of Frobenius manifold

Mφ on Ĥg,N(k1, . . . , kl). We will not reproduce here the complete list of primary differen-

tials (see [3]). We only notice that in the case g ≥ 1, the normalized (
∫

aα
ωβ = δαβ) holo-

morphic differentials ωβ on Riemann surfaces L are primary differentials. The (mero-

morphic) differentials dz and dz/z on the Riemann sphere L are primary differentials in

cases of the spaces H0,N(N) and H0,N(k,N − k), respectively.

The structure of Frobenius manifold Mφ on Ĥg,N(k1, . . . , kl) is defined by the mul-

tiplication law in the tangent bundle: ∂λm ◦ ∂λn = δmn∂λm , the unity e =
∑M

m=1 ∂λm ,

the Euler field E =
∑M

m=1 λm∂λm , and the one-form Ωφ2 =
∑M

m=1{ResPm(φ2/dλ)}dλm,
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346 A. Kokotov and D. Korotkin

where λ is the coordinate on the L lifted from the base P
1. The invariant metric η(v,w) =

Ωφ2(v ◦ w) on the Frobenius manifold turns out to be flat and potential (i.e., Egoroff-

Darboux metric). In the coordinates λ1, . . . , λM (which are called canonical), this metric

is diagonal:

η =

M∑
m=1

ηmm

(
dλm

)2
, ηmm = ResPm

(
φ2

dλ

)
(2.5)

and its rotation coefficients γmn = ∂λn

√
ηmm/

√
ηnn (where m �= n) have the following

properties. First, they are independent of the choice of a primary differential φ. Second,

they satisfy the equations

∂λk
γmn = γmkγkn, for distinct k, n,m, (2.6)

e
(
γmn

)
=

M∑
k=1

∂λk
γmn = 0, (2.7)

which provide the flatness of metric (2.5). Finally, the action of the Euler vector field on

γmn has the form

E
(
γmn

)
=

M∑
k=1

λk∂λk
γmn = −γmn. (2.8)

The following three examples of Frobenius manifolds related to Hurwitz spaces

are of special interest since they also arise in the theory of Coxeter, extended affine Weyl,

and Jacobi groups, respectively (see [1, 2, 3, 4]).

(i) M0;N. The underlying Hurwitz space here is the space H0,N(N). In this case

g = 0, l = 1, and the primary differential defining the structure of Frobe-

nius manifold is dz.

(ii) M0;k,N−k. The underlying Hurwitz space is H0,N(k,N − k), g = 0, l = 2,

1 ≤ k ≤ N − 1, and the Frobenius structure is defined by the primary

differential dz/z.

(iii) M̂1,N. The underlying space here is the covering Ĥ1,N(N), g = 1, l = 1, and the

primary differential on the elliptic surface L is the normalized (
∫

a
ω = 1)

holomorphic differential ω.

Due to [4], the first N − 1 flat coordinates of the metric η in case of the Frobenius

manifold M0;k,N−k of dimension M = N are given by
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G-Function of Frobenius Manifolds Related to Hurwitz Spaces 347

tµ = (−1)µ+1 k

µ
Res
z=∞

[
λ(z)

]µ/k
d ln z, 1 ≤ µ < k − 1,

tN−µ = (−1)µ N − k

µ
Res
z=0

[
(−1)Nλ(z)

]µ/(N−k)
d ln z, 1 ≤ µ ≤ N − k.

(2.9)

The last flat coordinate tN is defined by the equation

bN = (−1)N exp
[
(N − k)tN

]
. (2.10)

To write down the flat coordinates on the Frobenius manifold M̂1;N (of dimension

N + 1), set z(P) =
∫P∞1

ω, where ∞1 is the point on L such that p(∞1) = ∞ and λ(z(P)) =

p(P). Then the flat coordinates t0, . . . , tN are given by (see [1, 2]) t0 =
∫

b
ω = σ, where σ is

the modulus of the elliptic curve L, t1 =
∫

a
λ(z(P))dz(P), and

tµ = Res
z=0

z
[
λ(z)

]−(µ−1)/N
dλ(z), µ = 2, . . . ,N. (2.11)

2.2 Isomonodromic tau-function and G-function of Frobenius manifold

Let Mφ be the Frobenius manifold with an underlying Hurwitz space Ĥg,N(k1, . . . , kl) and

whose Frobenius structure is given by a primary differential φ. Set Γ = ‖γmn‖m,n=1,...,M

(the diagonal elements of the matrix Γ are not defined), U = diag(λ1, . . . , λM), and V =

[Γ,U]. Here γmn are the rotation coefficients of the metric (2.5), and λ1, . . . , λM are the

canonical coordinates on Mφ. The matrix V is well defined since the diagonal elements

of Γ do not enter the commutator [Γ,U].

The isomonodromic tau-function τI of the Frobenius manifold Mφ is defined by

the system of (compatible) equations

∂ ln τI

∂λm
= Hm, m = 1, . . . ,M, (2.12)

where the Hamiltonians Hm are defined by

Hm =
1

2

∑
n�=m; 1≤n≤M

V2
nm

λm − λn
, m = 1, . . . ,M. (2.13)

Let t1, . . . , tM be the flat coordinates on the Frobenius manifold Mφ. The Jacobian

J = det ‖∂λm/∂tn‖ can be expressed in terms of metric coefficients ηmm as follows:

J =

(
M∏

m=1

ηmm

)1/2

=

(
M∏

m=1

ResPm

φ2

dλ

)1/2

. (2.14)
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348 A. Kokotov and D. Korotkin

The G-function of the Frobenius manifold Mφ is defined as:

G = ln

(
τI

J1/24

)
. (2.15)

3 Isomonodromic tau-function of Frobenius manifold

and Bergmann tau-function on Hurwitz space

3.1 Rotation coefficients of the flat metric η and the Bergmann kernel

First, we recall the definition of the Bergmann kernel. In the case g > 0, the Bergmann

kernel on the Torelli marked Riemann surface L is defined by B(P,Q) = dPdQ ln E(P,Q),

where E(P,Q) is the prime form on L (see [7]). At the diagonal P = Q, the Bergmann kernel

is singular:

B
(
x(P), x(Q)

)
=

(
1(

x(P) − x(Q)
)2 + H

(
x(P), x(Q)

))
dx(P)dx(Q), (3.1)

where

H
(
x(P), x(Q)

)
=

1

6
SB

(
x(P)

)
+ o(1) (3.2)

as P → Q. Here x(P) is a local coordinate of a point P ∈ L and SB is the Bergmann projec-

tive connection (see, e.g., [7, 15]).

If g = 0 and z : L → P
1 is a biholomorphic map, then the Bergmann kernel is

defined by

B
(
z(P), z(Q)

)
=

dz(P)dz(Q)(
z(P) − z(Q)

)2 . (3.3)

(In particular, SB(z) ≡ 0 in the local parameter z.)

Near a simple ramification point Pm ∈ L of covering (2.1), we introduce the local

parameter

xm(P) =
(
λ(P) − λm

)1/2
, (3.4)

where λ(P) = p(P), λm = p(Pm), m = 1, . . . ,M.
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G-Function of Frobenius Manifolds Related to Hurwitz Spaces 349

Let U(Pm) and U(Pn) be small neighborhoods of ramification points Pm and Pn,

respectively. For (P,Q) ∈ U(Pm) × U(Pn), we set

bmn(P,Q) =
B
(
xm(P), xn(Q)

)
dxm(P)dxn(Q)

. (3.5)

Lemma 3.1 (cf. [9]). The rotation coefficients γmn of the metric

η =

M∑
m=1

ResPm

(
φ2

dλ

)(
dλm

)2
(3.6)

are related to bmn(P,Q) as follows:

γmn =
1

2
bmn

(
Pm, Pn

)
, m, n = 1, . . . ,M, m �= n. (3.7)

�

Proof. For g ≥ 1, the proof is in [9]. In brief, it goes as follows. Since the rotation coeffi-

cients are independent of the choice of a primary differential φ, it is sufficient to verify

(3.7) only in the case φ = ω1, where ω1 is the holomorphic differential on L such that∫
aα

ω1 = δ1α. For such a primary differential, we have

ηmm = ResPm

ω2
1

dλ
=

1

2

[
ω1

(
xm(P)

)
dxm(P)

∣∣∣∣
P=Pm

]2

. (3.8)

Now, (3.7) follows from the definition of rotation coefficients and the Rauch formula:

∂

∂λn

[
ω1

(
xm(P)

)
dxm(P)

∣∣∣∣
P=Pm

]
=

1

2
bmn

(
Pm, Pn

)[ω1

(
xn(P)

)
dxn(P)

∣∣∣∣
P=Pn

]
. (3.9)

Consider the case g = 0. Let z : L → P
1 be a biholomorphic map such that z(∞1) = ∞.

Then φ = dz is a primary differential in the sense of Dubrovin. For this primary differen-

tial,

ηmm = Res
xm=0

[
z ′(xm

)
dxm

]2
2xmdxm

=
1

2

{
z ′(xm

)∣∣
xm=0

}2

. (3.10)

We prove an analog of Rauch’s variational formula for the meromorphic differen-

tial dz. Setting αm = z ′(xm)|xm=0, we get

∂

∂λn
{dz} =

∂

∂λn

[(
αm + O

(√
λ − λm

)) dλ

2
√

λ − λm

]
=

(
δmnαm

2x2
m

+ O(1)
)

dxm

(3.11)
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350 A. Kokotov and D. Korotkin

as xm → 0. Thus, the meromorphic differential (∂/∂λn)dz has the only pole at Pn and,

therefore,

∂

∂λn

{
dz(P)

}
=

1

2

[
B
(
P, xn

)
z ′(xn

)
dxn

∣∣∣∣
xn=0

]
. (3.12)

On the other hand, as P → Pm for m �= n, we have

∂

∂λn
{dz} =

∂

∂λn

(
αm + O

(
xm

))
dxm

=

(
∂αm

∂λn
+ O

(
xm

))
dxm.

(3.13)

Thus, due to (3.12), we get the following analog of the Rauch formula (3.9):

∂αm

∂λn
=

∂

∂λn
dz
(
xm

)
dxm

∣∣∣∣∣
xm=0

=
1

2
bmn

(
Pm, Pn

)
αn. (3.14)

Now, (3.7) follows from (3.10), (3.14), and the definition of rotation coefficients.

�

Remark 3.2. Lemma 3.1 clarifies properties (2.6), (2.7), and (2.8) of the rotation coeffi-

cients. Namely, property (2.6) is nothing but the Rauch variational formula for the

Bergmann kernel, and (2.7) and (2.8) follow from the invariance of the Bergmann ker-

nel under the translations λ �→ λ + ε and (respectively) the dilatations λ �→ (1 + δ)λ of

every sheet of the covering (2.1).

3.2 The Bergmann tau-function

Introduce the quantities

Bm = −
1

12
SB

(
xm

)∣∣∣
xm=0

, m = 1, . . . ,M, (3.15)

where SB is the Bergmann projective connection from (3.2), xm is, as usual, the local

parameter (3.4) near the ramification point Pm. In [10], we introduced the so-called

Bergmann tau-function τB on the Hurwitz space Ĥg,N which is defined by the system

of equations

∂ ln τB

∂λm
= Bm, m = 1, . . . ,M. (3.16)
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The local solvability of system (3.16) can be obtained, in particular, from the

symmetry of the Bergmann kernel and the first statement of the following lemma.

Lemma 3.3. The quantities Bm satisfy the following equations:

∂λnBm = −
1

4
b2

mn

(
Pm, Pn

)
, m �= n, (3.17)

e
(
Bm

)
=

M∑
n=1

∂λnBm = 0, (3.18)

E
(
Bm

)
=

M∑
n=1

λn∂λnBm = −Bm. (3.19)

�

Proof. Since the singular part of the Bergmann kernel in a neighborhood of the ramifica-

tion point Pm is independent of {λn}, we have

∂λnBm = −
1

2

{
∂λnbmm(P,Q)

}∣∣∣
P=Q=Pm

. (3.20)

Computing the right-hand side of (3.20) via the Rauch formula for the Bergmann kernel

∂λmbnk(P,Q) =
1

2
bnm

(
P, Pm

)
bmk

(
Pm,Q

)
, (3.21)

we get (3.17).

Under the translation λ �→ λ+ε and the dilatation λ �→ (1+δ)λ of each sheet of cov-

ering (2.1) (both transformations generate conformal isomorphisms of L), the Bergmann

kernel remains invariant:

Bε
(
Pε,Qε

)
= Bδ

(
Pδ,Qδ

)
= B(P,Q). (3.22)

We have the following transformation rules for the local parameter xm and the critical

values λm:

xε
m

(
Pε
)

= xm(P), xδ
m

(
Pδ
)

= (1 + δ)1/2xm(P),

λε
m = λm + ε, λδ

m = (1 + δ)λm.
(3.23)

Therefore, the function H from (3.1) transforms as follows:

Hε
(
xε

m

(
Pε
)
, xε

m

(
Qε
))

= H
(
xm(P), xm(Q)

)
, (3.24)

Hδ
(
xδ

m

(
Pδ
)
, xδ

m

(
Qδ
))

=
1

1 + δ
H
(
xm(P), xm(Q)

)
. (3.25)
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352 A. Kokotov and D. Korotkin

Differentiating (3.24) and (3.25) with respect to ε and δ, respectively, we get

dHε

dε
=

∑
n

∂Hε

∂λε
n

= 0, (3.26)

dHδ

dδ
=

∑
n

λn
∂Hδ

∂λδ
n

= −
1

(1 + δ)2
H. (3.27)

Setting ε = 0 and δ = 0, and then P = Q in (3.26) and (3.27), we get (3.18) and (3.19). �

3.3 The relation between τB and τI

The following simple observation provides a basis of this work.

Proposition 3.4. The Bergmann tau-function τB from [10] and the isomonodromic tau-

function τI are related as follows:

τI =
(
τB

)−1/2
. (3.28)

�

Proof. Let Hm be the quadratic Hamiltonians from (2.13). Due to Lemmas 3.1 and 3.3, we

have

Hm =
1

2

∑
n�=m

V2
mn

λm − λn
=

1

2

∑
n�=m

γ2
mn

(
λm − λn

)
=

1

8

∑
n�=m

b2
mn

(
Pm, Pn

)(
λm − λn

)
= −

1

2

∑
n�=m

(
λm − λn

)
∂λnBm

= −
1

2

(
λm

∑
n�=m

∂λnBm −
∑

n�=m

λn∂λnBm

)

=
1

2

M∑
n=1

λn∂λnBm = −
1

2
Bm,

(3.29)

which proves (3.28). �

3.4 The Bergmann tau-function for coverings with arbitrary

branching over the point at infinity

In [10], the Bergmann tau-function τB was explicitly calculated in cases of Hurwitz

spaces H0,N(1, . . . , 1) and Ĥ1,N(1, . . . , 1). In higher genera (i.e., for the spaces Ĥg,N(1, . . . , 1)

with g ≥ 2) in [10], expressions for the modulus square |τB|2 were found. (It should be
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noted that in [10] the general situation of Hurwitz spaces of coverings with higher mul-

tiplicities of the finite branch points was investigated. This general case corresponds to

nonsemisimple Frobenius manifolds which are not considered here.)

A slight modification of the proofs from [10] leads to the explicit formulas of

the Bergmann tau-function of the Hurwitz spaces H0,N(k1, . . . , kl) and Ĥ1,N(k1, . . . , kl)

of coverings with the branching of type (k1, . . . , kl) over the point at infinity. (Coverings

from Hg,N(1, . . . , 1) considered in [10] have no branching over the point at infinity.)

First, consider the case g = 0. Let [p : L → P
1] ∈ H0,N(k1, . . . , kl). Let also z : L →

P
1 be a biholomorphic map such that z(∞1) = ∞ and

z(P) =
[
λ(P)

]1/k1
+ O(1), (3.30)

as P → ∞1, where λ(P) = p(P).

Introduce the local parameter ζs near the point ∞s with s ≥ 2:

ζs(P) = λ−1/ks(P). (3.31)

The map z near the point ∞s (s ≥ 2) is a holomorphic function of ζs. Near the simple

ramification point Pm, the map z is a holomorphic function of the local parameter xm

from (3.4). The next statement is a modification of [10,Theorem 6]. Its proof is essentially

the same.

Proposition 3.5. The Bergmann tau-function on the Hurwitz space H0,N(k1, . . . , kl) is

given by the following expression:

τB =




l∏
s=2

(
dz

dζs

∣∣∣
ζs=0

)ks+1

M∏
m=1

dz

dxm

∣∣∣
xm=0




1/12

. (3.32)

�

Now let g = 1 and [p : L → P
1] ∈ Ĥ1,N(k1, . . . , kl), where L is an elliptic Riemann

surface. Let ω be a holomorphic (not necessarily normalized) differential on L. Introduce

the notation

hs =
ω
(
ζs(P)

)
dζs(P)

∣∣∣∣
P=∞s

, s = 1, . . . , l,

fm =
ω
(
xm(P)

)
dxm(P)

∣∣∣∣
P=Pm

, m = 1, . . . ,M.

(3.33)
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Let σ be the modulus of the elliptic surface L. Define the Dedekind eta-function by

η(σ) =


 d

dz
Θ

1

2
1

2

 (z, σ)
∣∣∣∣
z=0




1/3

. (3.34)

The next statement is a modification of [10, Theorem 5].

Proposition 3.6. The Bergmann tau-function on the Hurwitz space Ĥ1,N(k1, . . . , kl) is

given by

τB = η2




l∏
s=1

hks+1
s

M∏
m=1

fm




1/12

. (3.35)

�

Due to Riemann-Hurwitz formula the right-hand side of (3.35) is independent of

normalization of the holomorphic differential ω.

Remark 3.7. The way to obtain (3.32) and (3.35) was somehow indirect in [10]. Namely,

these formulas were deduced from the study of the appropriately regularized Dirichlet

integral S = (1/2π)
∫

L
|φλ|2, where eφ|dλ|2 is the flat metric on L obtained by projecting

down the standard metric |dz|2 on the universal covering L̃. The derivatives of S with

respect to the branch points can be expressed through the values of the Schwarzian con-

nection at the branch points; this reveals a close link between S and the modulus of the

Bergmann tau-function. On the other hand, the integral S admits an explicit calculation

via the asymptotics of the flat metric near the branch points and the infinities of the

sheets of the covering. Moreover, it admits a “holomorphic factorization,” that is, it can

be explicitly represented as the modulus square of some holomorphic function, which

allows one to compute the Bergmann tau-function itself.

To prove relations (3.32) and (3.35) directly (i.e., without any use of Dirichlet in-

tegrals) remains an open problem.

4 G-function of Frobenius manifolds related to Hurwitz spaces

in genera 0 and 1

4.1 The general formulas for the G-function

The following two theorems are immediate consequences of Propositions 3.4, 3.5, and

3.6.
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Theorem 4.1. The G-function of the Frobenius manifold with an underlying Hurwitz

space H0,N(k1, . . . , kl) and whose Frobenius structure is given by a primary differential

φ can be expressed as follows:

G =
1

24
ln




M∏
m=1

dz

dxm

∣∣∣∣
xm=0

l∏
s=2

(
dz

dζs

∣∣∣
ζs=0

)ks+1
(

M∏
m=1

ResPm

φ2

dλ

)1/2




. (4.1)

�

Theorem 4.2. The G-function of the Frobenius manifold with an underlying Hurwitz

space Ĥ1,N(k1, . . . , kl) and whose Frobenius structure is given by a primary differential

φ can be expressed as follows:

G =
1

24
ln




M∏
m=1

fm

l∏
s=1

hks+1
s

(
M∏

m=1

ResPm

φ2

dλ

)1/2




− ln η(σ). (4.2)

�

4.2 Examples

4.2.1 The Frobenius manifold M0;N. This manifold is isomorphic to the orbit space

C
N−1/AN−1 of the Coxeter group AN−1 (see [3]).

In this case, l = 1 and the first factor at the denominator of (4.1) is absent. As a

map z, we can take one given by (2.2), so

(
M∏

m=1

ResPm

φ2

dλ

)1/48

=

(
M∏

m=1

Res
xm=0

[
z ′(xm

)]2
dxm

2xm

)1/48

= const

(
M∏

m=1

dz

dxm

∣∣∣∣
xm=0

)1/24
(4.3)

and, therefore, G = const.

4.2.2 The Frobenius manifold M0;k,N−k. According to [4], this manifold is isomorphic

to the orbit space of the extended affine Weyl group W̃k(AN−1).
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In this case, l = 2 and z is given by (2.3). Using the equality ζ2 = λ−1/(N−k), we get

dz

dζ2
=

1

λ ′
z

dλ

dζ2

=
1

bN + O(z)

(
z

ζ2

)N−k+1

=
1

bN + O(z)
[
bN + O(z)

](N−k+1)/(N−k)

(4.4)

as z → 0 and

dz

dζ2

∣∣∣∣
ζ2=0

= b
1/(N−k)
N ,

(
dz

dζ2

∣∣∣∣
ζ2=0

)(k2+1)/24

= b
(N−k+1)/24(N−k)
N .

(4.5)

Since φ = dz/z, we have

(
N∏

m=1

ResPm

φ2

dλ

)1/48

=

(
N∏

m=1

Res
xm=0

[
z ′(xm

)]2
dxm

2xm

[
z
(
xm

)]2
)1/48

= const

(
M∏

m=1

dz

dxm

∣∣∣∣
xm=0

)1/24

(
M∏

m=1

γm

)1/24
,

(4.6)

where γm = z(Pm) are the critical points of the map λ(z).

On the other hand, M = 2g + l + N − 2 = N and

λ ′(z) = kzk−1 + · · · + (k − N)bN

zN−k+1

=

k

N∏
n=1

(
z − γn

)
zN−k+1

.

(4.7)

Therefore,

k

M∏
m=1

γm = ±(N − k)bN (4.8)
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and (up to a constant independent of {λk})

G = −
1

24

ln bN

N − k
= −

1

24
tN, (4.9)

in agreement with the main result of [14].

4.2.3 The Frobenius manifold M̂1,N. This manifold is isomorphic to the orbit space

C × C
N−1 × {�z > 0}/J(AN−1) of the Jacobi group J(AN−1) (see [1, 2, 3]).

In this case, l = 1 and M = N+ 1. Following [1, 2], we start the enumeration of the

flat coordinates from 0. We have

(
M∏

m=1

ResPm

φ2

dλ

)1/48

= const

(
M∏

m=1

ω
(
xm(P)

)
dxm(P)

∣∣∣∣
P=Pm

)1/24

=

(
M∏

m=1

fm

)1/24

.

(4.10)

On the other hand, since ζ1 = λ−1/N,

tN = Res
z=0

(
z
[
λ(z)

]−(N−1)/N
dλ(z)

)
= Res

ζ1=0

(
z
(
ζ1

)dζ1

ζ2
1

)
= z ′(ζ1

)∣∣
ζ1=0

= h1,

G = − ln η
(
t0

)
−

N + 1

24
tN,

(4.11)

which proves the conjecture from [14].

5 Some remarks on higher genus case

Here we give a formula for the modulus square of the tau-function of Frobenius mani-

folds related to the Hurwitz spaces Hg,N(k1, . . . , kl) with g ≥ 2. From this formula, one

can derive an expression for the real part of the corresponding G-function. For simplic-

ity, we consider only the case k1 = · · · = kl = 1; the results in the general case differ

insignificantly.

If the covering L has genus g > 1, then it is biholomorphically equivalent to the

quotient space H/Γ , where H = {z ∈ C : �z > 0}; Γ is a strictly hyperbolic Fuchsian group.

Denote by πF : H → L the natural projection. Let x be a local parameter on L. Introduce
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the standard metric of the constant curvature −1 on L:

eχ(x,x̄)|dx|2 =
|dz|2

|�z|2
, (5.1)

where z ∈ H, πF(z) = P, and x = x(P).

Denote by ζ = 1/λ the local coordinate in a neighborhood of the infinity of any

sheet of covering L. Introduce functions χext(λ, λ̄), χint(xm, x̄m),m=1, . . . ,M, and χ∞
k (ζ, ζ̄),

k = 1, . . . ,N by specifying x = λ, x = xm, and x = ζ (in a neighborhood of the point at

infinity of the kth sheet) in (5.1), respectively.

Consider the following domain on the kth sheet of L: Lk
ρ = {λ ∈ Lk : ∀m |λ − λm| >

ρ, |λ| < 1/ρ}, where λm are all the branch points which belong to the kth sheet Lk of the

covering L. (The sheet Lk can be considered as a copy of the Riemann sphere P
1 with

appropriate cuts between the branch points, and the domain Lk
ρ is obtained from Lk by

deleting small discs around branch points belonging to this sheet and the disc around

infinity.)

The function χext
k : Lk → R is smooth in the domain Lk

ρ for any sufficiently small

ρ > 0. This function has finite limits at the cuts (except the endpoints which are the

branch points); at the branch points and at the infinity there are the following asymp-

totics:

∣∣∂λχext
k

(
λ, λ̄
)∣∣2 =

1

4

∣∣λ − λm

∣∣−2
+ O

(∣∣λ − λm

∣∣−3/2
)

(5.2)

as λ → λm, and

∣∣∂λχext
k

(
λ, λ̄
)∣∣2 = 4|λ|−2 + O

(
|λ|−3

)
(5.3)

as λ → ∞. We define the “truncated” integral Tρ by

Tρ =

N∑
k=1

∫
Lk

ρ

∣∣∂λχext
k

∣∣2∣∣dλ ∧ dλ̄
∣∣

2
. (5.4)

Then there exists the finite limit

reg
∫
L

(∣∣χλ

∣∣2 + eχ
)∣∣dλ ∧ dλ̄

∣∣
2

= lim
ρ→0

(
Tρ +

N∑
k=1

∫
Lk

eχext
k

∣∣dλ ∧ dλ̄
∣∣

2
+ (8N + 4M)π ln ρ

)
.

(5.5)
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Define the function SF by

SF

(
λ1, . . . , λM

)
=

1

24π

{
reg

∫
L

(∣∣χλ

∣∣2 + eχ
)∣∣dλ ∧ dλ̄

∣∣
2

}

+
1

3

M∑
n=1

χint
(
xn

)∣∣∣∣
xn=0

−
1

3

N∑
k=1

χ∞
k (ζ)

∣∣∣∣
ζ=0

(5.6)

and introduce the determinant of the Laplacian operator (in the Poincaré metric)

det ∆ = exp{−ζ ′(0)}, where ζ(s) is the zeta-function of the Laplacian on the Riemann sur-

face L.

Let B be the matrix of b-periods of the Riemann surface L. The following theorem

is a consequence of [10, Theorem 9] and Lemma 3.1.

Theorem 5.1. Let g ≥ 2. The modulus square of the isomonodromic tau-function on

Ĥg,N(1, . . . , 1) has the following representation:

∣∣τI

∣∣2 = eSF
(det �B)1/2

(det ∆)1/2
. (5.7)

�

Remark 5.2. At the moment, we do not know the explicit holomorphic factorization (sim-

ilar to that in genera 0 and 1) of the right-hand side of (5.7). Finding such a factorization

seems to be of great interest.

Let Mφ be the Frobenius manifold with underlying Hurwitz space Ĥg,N(1, . . . , 1)

and the Frobenius structure given by a primary differential φ. From Theorem 5.1, it fol-

lows that the real part of the G-function of Mφ is given by

Re G =
1

2
SF +

1

4
ln

(det �B)
(det ∆)

−
1

48
ln

∣∣∣∣∣
M∏

m=1

ResPm

φ2

dλ

∣∣∣∣∣. (5.8)
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