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THE NEUMANN PROBLEM FOR
THE WAVE EQUATION IN A CONE

A. Yu. Kokotov, P. Neittaimaki, and B. A. Plamenevskii UDC 517.9

The Neumann problem for the wave equation in a wedge is considered. The asymptotic behavior of
solutions to the problem in a neighborhood of the edge of the wedge is studied. In order to deduce
and justify asymptotic formulas, the solvability of the problem in the scale of weight function spaces is
investigated. Bibliography: 30 titles.

Let K be an open cone in R™¢ with vertex at the origin. We suppose that K is smooth outside the
vertex. Let0 <d <n—2,andlet K = K x R? = {x = (y,2) €R":y € K,z € R’} be a wedge in R". In the
cylinder

0= {(x,1):x €K, —o0 <t < 4o},

we consider the problem

Ou(x,t) := (02 — Adu(x,1) = f(x,1), (x,1)€0Q,

0.1)
oyu(x,t) =0, (x,1)€dQ,

where v is the unit outward normal to 9X.

The main goal of this paper is to study the asymptotic behavior of solutions to the problem (0.1)
in a neighborhood of the edge of the wedge K. To derive and justify asymptotic formulas, we study the
solvabitliy of the problem (0.1) in the scale of weight function spaces.

The Dirichlet problem was studied for the wave equation in Q (c¢f. [1]) for strongly hyperbolic
systems of second-order differential equations (cf. [2]). The methods of the above-mentioned papers were
based on “combined” estimates for solutions. In this paper, we develop this approach for the Neumann
problem (0.1).

We explain briefly what we mean by combined estimates. We set

L(l)y, D:, Df) = D .

We apply the Fourier transform F_,y_.(¢ 7 to the problem (0.1), where { € R, 1=06—iy, 6ER, y>0.
Then the Neumann problem for the operator L(D,,{,7) in the cone K appears. This operator is elliptic
for fixed parameters { and 1. However, the dependence on 7 is “hyperbolic.” It is required to estimate
solutions uniformly with respect to the parameters. To this end the cone K is divided into zones. In a
neighborhood of the vertex, in the zone

- 2
{rek:lyl <cop™, p=([F+ 1"},
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the known weight elliptic estimate for solutions is used. Far from the vertex, for |y| > ¢1]p|~!, we prove a
weight hyperbolic estimate. Finally, in the intermediate zone, we use a weak global estimate in the entire
cone which follows from the well-known estimate

'yz/exp(—-2yt)|\7x,,u(x,t)|2dxdtSc/exp(—-2’yr)|Du(x,t)|2dxdt (0.2)
0 0

for the problem in the cylinder Q with the homogeneous boundary condition. Thus, we obtain an a priori
combined estimate for solutions in the scale of weight function spaces. The following inequality is an
example of such an estimate:

llxpvs Ha(K: p)I> +lv: Hg (K: p) P < / IL(Dy, STy + P ) ay, (0.3)
K

where K is a cone of dimension n—d > 2, v satisfies the homogeneous Neumann condition on 0K,
xp(¥) = x(py), % is a cut-off function such that (y) = 1 for |y| < 1 and ¥ (y) = O for |y| > 2, the norm in
Hé(K ; p) is defined by formula (1.3) below. For  we can take any number of the interval (—eo, 1] except
for some set of isolated values. The constant ¢ in (0.3) is independent of v and the parameters { € RY,
T=06—-I7,6€R,v>0.

In the case n—d > 2, the method of [1] can be applied to the problem (0.1) after a slight modification.
The case n — d =2 should be considered separately. As in the case of elliptic problems, the weight norms
should be changed (cf. [3-5], where the Neumann elliptic problem was considered in domains with edges).

Owing to combined estimates, it is possible to study the solvability of the problem in a cone for the
operator L(Dy, {,7) in the scale of weight spaces and, after that, derive and justify asymptotic formulas for
solutions. Under suitable conditions on the right-hand side, such formulas consist of linear combinations
of “asymptotic” solutions to the corresponding homogeneous problem in the cone. The coefficients of
these combinations are explicitly expressed in terms of exact solutions (growing in a neighborhood of the
vertex) to the adjoint homogeneous problem. Using the inverse Fourier transform F(Evlt)_d(:’,), we expand
these results to the problem in the cylinder Q.

This scheme of the study of the problem (0.1) can be also used in the study of some class of hyperbolic
systems that includes the dynamical system of equations of elasticity theory. The authors intend to devote
another paper to this question.

Furthermore, we consider formulas for the coefficients in the asymptotic expansion in detail. So-
lutions to the homogeneous problem occurring in the formulas for the coefficients can be expressed in
terms of a hypergeometric function. Therefore, in terms of the coefficients in the asymptotic expansions
of solutions to the problems in the cylinder Q, we can express the effects of finite propagation speed for
disturbances as follows: the coefficients vanish before the leading edge of the disturbance arrives (which
is clear from the general point of view) and the coefficients become infinitely smooth functions of the time
variable after the trailing edge passes (which follows from the formulas obtained). Similar questions for
the Dirichlet problem were considered in [6].

We indicate some publications devoted to hyperbolic problems in domains with singularities. The
methods and results of these publications are different from those presented in this paper. Problems
for the wave equation in a wedge with edge of codimension 2 was studied by Eskin in [7], where the
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homogeneous differential operators of any order with constant coefficients were given on the sides of the
wedge. These operators satisfy the uniform Lopatinskii condition. The main result of {7] is an explicit
formula for solutions. The method (the reduction to the Riemann—Hilbert problem) is not generalized to
the case of a wedge with edge of codimension larger than 2. The asymptotic behavior of solutions was
not discussed in [7].

The approach used in the paper [8], devoted to the Cauchy—Dirichlet problem in a domain with conical
points, was proposed in [9] in order to describe the asymptotic behavior of solutions in a neighborhood
of singularities. In [10], one can find some information about the asymptotic behavior of solutions in a
neighborhood of a conical point (in the case of the second-order hyperbolic equation, the Cauchy-Dirichlet
problem). In this paper, we use, in fact, the same method as in [9]. The wave equation was considered
by Cheeger and Taylor [11] (their approach is based on the functional calculus for the Laplace operator),
Uchida [12], and Gerard and Lebeau [13] (microlocal analysis). We also mention earlier works of Kupka
and Osher [14], Osher [15], Reisman [16], Sarason {17], and Sarason and Smoller [18].

Section 1 contains some preliminary information. In Sec. 2, we give combined estimates for solutions
to the problem in a cone of dimension n —d > 2. We give only a brief description of these estimates
because the situation is close to that considered in [1, 2]. The case n —d = 2 is discussed in Sec. 3. The
properties of the operator of the problem in a cone in the scale of weight spaces are studied in Secs. 4 and
5. The asymptotic behavior of solutions to the problem in a cone is considered in Sec. 6. Section 7 deals
with the problem in a wedge. In Sec. 8, we derive explicit formulas for the coefficients of the asymptotic
expansions of solutions to the problem (0.1).

§ 1. Preliminaries
1.1. Pencil 2A(A). In a domain Q = KN §*~“~! on the sphere §"~“~!, we define the operator pencil
AN = (A + (n—d —2)ih—3 (1.1

on functions « € H>(Q2) such that dyu}yo= 0, where Vv is the unit outward normal to 9Q and  is the
Laplace—Beltrami operator on §"~¢~!, The spectrum of the pencil 2()) consists of the normal eigenvalues

M = (i/2){(n—d = 2) F (n—d —2)* +4w)'*}, k=0,1,2,...,

where {u;} (0=pup < u; <...) is the sequence of all eigenvalues of the operator & enumerated with
repetitions according to multiplicity. With the eigenvalues A, we associate the eigenfunctions @ of the
pencil A(A) such that

\/(7" d = 22+ 4u (P}, Pe) 1y(0) = -

For n —d > 2 there are no associated functions. In the case n—d = 2, the pencil 2(A) has the simple
eigenvalues A ; = Fj(n/a), i, j = 1,2,..., and the double eigenvalue Ao =0 (o is the angle of the corner
K in the plane R?). The eigenfunction & ;(®) corresponding to Ay, j > 0, has the form

®;(0) = (jr) /2 cos(jnw/a).
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The eigenfunction ®p(®) = o~1/2 and the associated function @) (w) = 0 correspond to the eigenvalue

Ao =0.

1.2. The function space. Let s be a nonnegative integer, and let § € R. We denote by Hé(K ) the
completion of C*(K \ O) in the norm

X 1/2
il = 3 [ BPEHDsG)Pay) a2

lel<s

The space Hf;(K :q), where q is a positive parameter, is equipped with the norm

1/2
u;Hg—"(K)n?) : (13)

s H§(K: )| = (kioqz"i

A point x of the wedge K = K x R? will be written in the form x = (y,z), where y € K and z € RY. We
denote by M the edge O x R? of the wedge X, and by Q the cylinder {(x,1) : x € X,z € R}. The space
H3(Q) is the completion of C2(X\ M) x R) in the norm

- 1/2
witf@N = (3 [ [P ot P sar) (14)
|u|<-"jc B

The Hy(Q; q)-norm is given by formula (1.3) with Q instead of K. We denote by Vi (Qs7), Y> 0, the space
equipped with the norm

[wi Vs (@0l = [Iwh Hg(0: ), (1.5)

where
w¥(x,1) = exp(—yt)w(x,1).
Let i
B0, 80 = Fepy—g0na0) = [ exp(—iCe= iwhwly, 1) dadt,

where 1= 06— iy, 6 € R. We set

p=pG1) =GP+, n=py, W51 =wp 7). (1.6)

We can check (cf. [1]) that the norm |[|w; VSB(Q,y)I] is equivalent to each of the following norms:

R oo 5 i/2
(/19080 gxpIPatas) .

1/2
(/pd—n—?-(ﬁ—s)llw(’ C,T);Hg(K, l)szCdG)
(the constants in the corresponding equivalence relations are independent of y > 0).
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1.3. Energy estimate for solutions to the problem (0.1), (0.2). In fact, the following assertion is
well known.

Proposition 1.1. Ler u € S(R"), dyu(x,1) =0, (x,7) € 0Q. Then for any y> 0 we have

+oo too
'8 / exp(—21)|| Vesu(,1); Lo(K) |2 dr < ¢ / exp(—2)|| (Tu)(,1); L2(K)|* dt, (1.8)

—c0
where the constant c is independent of u and y > 0.

In the case of the Dirichlet boundary condition, the proof of the estimate (1.8) can be found, for
example, in [2, Proposition 1.1]. The same arguments are suitable for the Neumann condition.

§ 2. Combined Estimate for Solutions to the Problem in a Cone K. Casen—d > 2

2.1. Statement of the problem in a cone. Applying the Fourier transform F{. 1)—(7) to the problem
(0.1), (0.2), we obtain the following problem with parameter ({, ) in the cone K:

L(D.\" C’t)a(% CvT) = (Cz - 1'2 - A}’)ﬁ(y’ C’T) =J?(y’ C:T)’

= .1
ovit(y,5,7) =0, yedk,
where v is the unit outward normal to oK.
After the change of the variable n = py, the problem (2.1) takes the form
L(Dn,e)U(ﬂ,C,T)=F(TLC,T), n EK, (7 7)
UM, 5,1)=0, meok, o
where
UG =ap"'n,§7), FM.§1)=p7Fp'n,50),
8=0(,1)=(p ,1p7!), T=0-iy, c€R, y>0
2.2. Energy estimate for solutions to the problem (2.1).
Proposition 2.1. Let v € S(R"), oyv(y) =0, y € oK. Then
7 [GOP +1Tw0)P)dy < [ ILOn G 0= vy @3
K K
Ifn—d > 2, then
Vv Hy (K p)II? < ellL(Dy, &, 1) La(K)I. (2.4)

The constant ¢ in (2.3) and (2.4) is independent of { ER%, 1 =0 — iy, 6ER, y> 0.
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Proof. In (1.8), we set

u(x1) =Wz, 1v(), W Eexp(n)SRE) NSREL),

where v satisfies the assumptions of the proposition. The inequality (1.8) takes the form
¥ [ (G0 - PP +17w0)P)dydtdo
<c [19(6,6- WPILDy, & 6~ v(y)dydt do.

Since y € exp(y)S(RIT)NS(R*!) is arbitrary, we obtain (2.3).
In the case n —d > 2, from the Hardy inequality

oo oo

. :
/ PP dr < s / R w(r) 24~ dr
0 0

(n—
we obtain the inequality

[Ie)Pu2ay<c [19v)Ra @5)
K K

The inequality (2.4) is deduced from (2.3) and (2.5). O

Remark 2.2. The inequality (2.3) (as well as the inequality (2.4) in the case n —d > 2) remains valid
if for v we take a function of the form

vie(y) = x(0) Iy (o),

where x(v) = x!(ly|), x' € CC(R), x! = 1 in a neighborhood of O, k = 0,1,2,... for n—d > 2 and
k=1,2,... forn—d =2, A and ®;, were introduced in 1.1.

Indeed, analyzing the proof of the energy estimate (1.8) (cf. [2]), we see that the function
ux,t) =y(z,Ove(y), W€ exp(1)SRTH NSR*)

satisfies (1.8) if the function

(052,1) = exp(—1)0u(y,z,1)
belongs to L>(Q). The last assertion is obviously true since A,v; = 0 in a neighborhood of O and the
functions vy, as well as their first-order derivatives, are square summable (Im}; < (n—d —2)/2).

2.3. Combined weight estimate for solutions to the problem (2.1) in the case n —d > 2. We follow

0 _
[2] and omit the proof. We denote by Dy the linear set spanned by functions w € C°(K'\ 0) such that
ovw(y) =0 for y € 9K and functions v; mentioned in Remark 2.2 such that ImAy < B— 1+ (n—d—2)/2.

Proposition 2.3. Suppose that n—d > 2, B < 1, and the line Imh =B — 1 + (n —d — 2)/2 does not

0
contain points of the spectrum of the pencil A()). Then for all v € Dg we have

llxpvs H3 (K: p) I+ ¥ [lvi Hy (K; )P < {1/ HR (BRI + (2" /2 £ La(K) |17}, (2.6)
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where f = L(Dy,C, v, %p(y) = x(py). x(¥) =% (|y|) x! € C°(R), x! = 1in a neighborhood of O. The
constant c in (2.6) is independent of { € Rd, T=0—-i,6€R y>0.

The proof of Proposition 2.3 differs from the proof of the corresponding assertion in [2, Proposition
1.3] only by the fact that, instead of a local weight elliptic estimate for a solution to the Dirichlet problem
for the operator L(Dy, ), we use a similar estimate for a solution to the Neumann problem.

Proposition 2.4. For any B € Rand U € H3TY(K; 1) such that 9,U =0 on 9K we have
8

(¥ p)? |13l HSTH(KG DI < ef [ WL (D, O)U HY(K: DI + Wl s HEEUK DIPY, 2D

where 3#.(y) = xL([Y]), We(y) = WL(IY]). L, WL € C°(R), s wl, = ), 3L and L, vanish in a neigh-

borhood of O and are equal to 1 at infinity, ® = ({/p,t/p). s =0,1,..., and the constant c is independent
of the parameters.

We make the following remark. In [2], the estimate (2.3) (but not the inequality (2.4) as was asserted
there) was used in the proof of (2.7) in the case of the Dirichlet condition. This proof remains valid in the
case of the Neumann condition; moreover, by the above arguments, (2.7) remains valid forn —d = 2.

Proposition 2.5 (cf. [19] or, for example, [20]). Let 4, w € C(K), % = | in a neighborhood of the
vertex O of the cone K, YW =Y. Let the line ImA = B —s— 1+ (n— d—2)/2 do not contain eigenvalues of
the pencil . Then every function U € Hg”‘ (K; 1) such that 9,U = 0 on 0K satisfies the inequality

U By (K DI < e IwL (D, )Us H(K: DI + U Hy (K DI (2.8)

Proceeding by induction on g and using Proposition 2.3 at the first step (cf. [2]), from (2.7) and (2.8)
we obtain the following assertion.

Proposition 2.6. We ser
{FlopK:p 1) 2(p/v>’fnf HET (Ko P+ (PP AL @29

where BERand g=0,1,.... Let B< 1, and let the line ImA = B— 1 + (n—d —2) /2 do not contain points
0
of the spectrum of the pencil . Then v € Dy satisfies the inequality

ooy HEES(K p) 2+ P v (K )P < o{L Dy, &, 1)}l V) (2.10)

where q =0, 1,... and the constant c is independent of v and the parameters.

§ 3. Combined Estimate for a Plane Corner

In this section, K is a corner of angle o in R2 and r = |x|. We introduce the space Hé’O(K ) equipped
with the norm

s Hg (K)|| = [Pl LK)+ Y, 1P 14D%; Ly (k) (3.1)
O<lalg!
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Similar spaces with nonhomogeneous norms were introduced in [21, 5, 22]. The same spaces were
introduced in [20, Sec. 5.5] (cf. also [4]). For the sake of convenience, we prove all necessary technical
facts because the required result (the estimate (3.7) below) was not formulated in [20, 4] explicitly. In
fact, we follow [21] (for details we refer the reader to [22]).

Lemma 3.1. Ler g be a nonnegative integer, and let u € Hé_t:l[’o, B < 1. The following assertions hold.

1. yu =y (v+A), where y € C>(R?), x, = | in a neighborhood of O, v € H;IZ(K) AeC

2. The following estimate holds:

A < e{||P " vus La(K N {|x| < 1})]| +]

w; Lo (KN {1/2< o < 1|1} (3.2)

3.IfB<O0, then A=0.

Proof. 1. Let

o

A(r) =a*l/u(rcosw,rsinco)d(o, A=A(0+).
0

The existence of the last limit follows from the estimate

lA(2) —A(n)] < 7|A’(z)|dt< (] A" (1) 2 "1d1)1/2 (./rrl—zﬁdry/z

0

) 12
<e(T) / |Vu|*r? ‘de> , 0<t,n<T,

h<lsn

and the inclusion

P1vu € Ly (K).
Assertion 1 follows from the estimate

12 (= A)s La(K 0 {Jx] < 1) < ellrP~! vas La(K N {Jx] < TH])- 33)

Let us prove (3.3). We have

1 o

o 1 1
/ dr?8-3 / u—APdo < c{ / drr8-3 / u— AP do+ / P5-314(r) ——A(O)|2dr}.
0 0

0 0 0 3.4)
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We estimate the second term on the right-hand side of (3.4):

1 1 r
[P-21a0) - a@Pdr<2 [ = [u@liaE -Ads
0 0 0

1 1
=2 / dt|A'(7)| JA(z) — A(0)] / P83 4y
0 T

1
<e [W@IAR -AOR* 24
0

1 1/2 1 1/2
gc( / |A(1)-—A(0)|212B’_3d'c) < / rZB-‘|A’(r)lsz>
0 0
Hence
1 i
[P0 -a0Fdr<e [P Rar (3.5)
5 b

By the definition of A(z), we find

1
[7P3140) - AQ)Rdr < el i La(K 0 (] < 1.
0

The same estimate for the first term on the right-hand side of (3.4) follows from the Poincaré
inequality on the arc [0, c.

2. We have

1

14(0)] < |A(z)|+/|A’(r)|dT< |A()|+ (/l IA'(T)I%ZB—ldt)l/z (/‘tI—ZBd‘C)l/Z_
. 0

0

Hence
4(0)] < c{JA@)] + 1P~ vus La(K O {Jef < 111}

Integrating the last inequality with respect to ¢ € [1/2, 1], we obtain (3.2).

3. From (3.1) and (3.3) it follows that the functions r#~!x and rB_z(u —A) belong to the class
L>(KN{|x] < 1}). Consequently,
AP e Ly (KN {|x] < 1}).

In the case B < 0, the last assertion is valid only if A = 0. O
Lemma 3.2. Under the assumptions of Lemma 3.1, for any € € (0, 1) the following estimate holds:

Al < ellB=1 s La(K 0 {Jl < 1) + Cellus La(B 1 e/ 0B 2 < 1 < 1)1 (3.6)
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Proof. We apply the estimate (3.2) to the function w(x) = u(ex). Then

|A? < e{ € / 1xP=2| Ve (ex) > dx + / |u(ex)|? dx}

Kn{il<1} Kn{1/2< <1}
< c{é-l / 1| Z0e(x) |2 dox 272 / 1u(x)|2dx}.
Kn{lxl<1} Kn{e/2<)x|<1}
Replacing € with ¢!//(1-8) we obtain (3.6). O

Proposition 3.3. Let § < 1, and let the line ImA = B — 1 do not contain points of the spectrum of the

pencil A. Lety € C°(R?), x(x) = 1 for |x| < 1, x(x) =0 for |x| > 3/2. Let q be a nonnegative integer. Then

Big (K) satisfying the homogeneous Neumann condition on dK the

for some & > 0 and any function u €
following estimate hold:

llxaes H g “GON < e{ 1AL (D, 8)us HE, (K) |+ [lus HT (K 0 {8 < || < 231} (3.7)

Proof. As above, yu = yv+ %A, where the function xv belongs to HEIZ(K ) and satisfies the homo-
geneous Neumann condition on dK (we can assume that the cut-off function ¢ depends only on |x|). For
all B such that the line ImA = — I does not contain points of the spectrum of the pencil 2 the following

estimate in the homogeneous norms holds:

(Kl + v HEE (RO, (3.8)

o HIP2(K) | < e{IIXL(Dy, 0)v:HY o

B+q B+q

where y € Cf(RZ), yy = (cf. [19] or [20]). By (3.8), we have

20 2 2,0
s HY 20RO < e(llvs HEF2(R) + s HE22 ()1

< e{ AL (Dn, 8)vs Hy  (K)I|+ Ilwvs Hi ) (K) | + 4]} (39)

(recall that A =0 if B < 0). Since

IXL(Dn, 8)us Hy

<
< e(|XL(Dn. O)us HY,,

IXL(Dn, O)v: HY, ()] (K) |+ IXL(Dy, 0)As HY, (K|

(Kl +1A]),
we have

s HEF 2 (RO < eIl (Dn, O)uss Hy (KON + v HE o (K| + 4] (3.10)
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We estimate the second term on the right-hand side of (3.10). Using (3.3), we find

v HE (RO < e / (VP2 4 |u 2B o |99 L2 PB4 240)
Kn{ld<2}
< cfe? / (Ju—APPE4 4 | TuPPP=2 o vt 2 2820 2) gy
Kn{isice)
+ / (Ju—ARA=2 4 |Tur?B o |99 L2 28420 )
Kkn{egih<2}

<cle / (|l 4o |9 2242072y gy 14

K<}
FCH K {e< Y < z})ﬂ}
2 2,0
< (e B 20U + 1AL+ Cellus HO (K (e < bl < 211}

Estimating |A| with the help of Lemma 3.2, taking a sufficiently small €, and moving the terms containing
¢ to the left-hand side of (3.10), we obtain the inequality (3.7). 0

0
Lety € C(R?), x = 1 in aneighborhood of O, and let B < 1. We denote by Dg(2) the lineal spanned
on functions u € C(K \ O) such that dyu = 0 on 3K, on functions 3(x)|x|*®;(x/}x|), where ImA; < B—1,
0

and (only if B € (0, 1)) on the function y®g = x o.~'/2. If B < 0, then the lineal Dg(2) does not contain the
function % ®yp.

Proposition 3.4. Ler B < 1, let the line ImA = B — 1 do not contain points of the spectrum of the pencil
0

A, and let g be a nonnegative integer. Then every function u of the lineal DB(Z) satisfies the following

estimate.

xaes HEE2 20O |12 + (v/ p) s HE o (K 1)1

B+q

< {IL(Dn, s HY, (K DI + et HEL, (K IPY (31D

where Yoo € C°(R?), Yoo = 0 in a neighborhood of O, and .. = 1 at infinity.
Proof. Adding (2.7) (for s =g and B = B +¢) and (3.7), we obtain the inequality

2,0 2 2 1 2 2
I 2 (RO + 3/ )2t Sy (5 DIF < c{IL(Di, 8)us HY, (K DI

+ s HOH (KN {8 < 1] < 2} + lweetts HET,_ (K5 D[P} (3.12)

Since y/p < 1, we have

9 1 2 2+4.0 2
(VY (1 = e HETA(K: DIP < el Hy £20(K) -
Hence the cut-off function »z. on the left-hand side of (3.12) is not required. If the support of the function
1 — .. is sufficiently small, then the second term on the right-hand side of (3.12) is estimated from above

1
by cllwxu;Hqu_l(K; D> O
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—1

Making the change of variables 1 — y =7np~" in (3.11), we obtain the estimate

q+2
PR v La(K) P + 3 P82+ () La(K) |12 + P v HIEL (K p) 12
s=1

< LDy, & HE, (K )P+ ey HITL (KPP, (3u13)

where
() =X(PY), Weop(¥) =VWul(py), v(y)=u(py).
We estimate the last term on the right-hand side of (3.13) for ¢ = 0. We have

Ve Hy (KPP < [ BPED(9R+ b2+ g2 dy
e1/p<yl

<P [ (1992 +p2pP)dy < c(p =P RILD L O LRI
K (3.14)

(At the last step, we used the estimate (2.3).)
Now, we are ready to prove the main a priori estimate.

Proposition 3.5. Let B < 1, let the line Im\ = B — 1 do not contain any point of the spectrum of the

0
pencil 2, and let q be a nonnegative integer. Then every function u € Dg(2) satisfies the estimate

g+2
PPy LK)+ 3 20K ()i La(K) I+ v HEFL s )P
k=1
q . . " _ 9 2
< { X (p/9IL(Dy, & HETS (K IR+ (o B UL (D, G, s L2<K)||-}.
! (3.15)

Proof. We denote by {Lv}g the right-hand side of (3.15). For g = 0 the inequality (3.15) follows
from (3.13) and (3.14). Assuming that the inequality (3.15) holds for g < go, we prove that (3.15) holds
for ¢ = qo + 1. By Proposition 3.4, it is necessary to estimate the norm

2 2 2 2, 2 1 2
o HEL 2K DI = o, v 2 ()P + Pt o B (K ) (3.16)
To estimate the first term on the right-hand side of (3.16), we write the equality

L(Dy,0,0)(Wes,pv) = Yoo pL(Dy, §, 1)V + [L(Dy, §,T), Yoo, p|v + (L(Dy, 0,0) — L(Dy, §, 7)) Yoo, p-
3.17)
Since the line ImA = — | contains no eigenvalues of the pencil 2, the equation

L(Dy,0,0)w = f € HY  (K)

has a unique solution w € Hgfz (K) satisfying the homogeneous Neumann condition on dK. The following

’ q0
estimate holds:

2
s HE2(K) || < el f:HES . (KON (3.18)
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(cf. [19] or [20]). The norms of the second and third terms on the right-hand side of (3.17) do not exceed
cpllvs Hgg_';; (K; p)||- Therefore, from (3.16), (3.17), and (3.18) it follows that

2 20, Lrgro 112
Wor: B2 )P < LDy, G DS ()N + PP T (K ).

The last summand was already estimated at the previous step of the induction process (cf. (3.15) for
9= qo): |
2 g 12 2 2
Pl HE K I < (p/1 LY

It remains to note that
2 2 . prgotl L2 2
(p/VHLVY, +ILvi B (K: p) |2 = {2 -

§ 4. The Operator of the Boundary-Value Problem in a Cone

4.1. A weak solution to the problem (2.1). We write the problem (2.1) in the simplified notation:

L(D,,G,tu= (> - —A)u=f inK,

4.1
dvu=0 onodk. 1)

As usual, a function ¥ € H'(K) is called a weak solution to the problem (4.1) with f € L,(K) if the
following integral identity holds:

B(u,v) = 'uﬁy — (- uvdy= | fvdy
! /

for any function v € H!(K). By the Vishik-Lax-Milgram theorem' and the following assertion, we obtain
the existence of a weak solution to the problem (4.1) forall f € Ly(K), { € R, 1 =6~ iy, 7#O.

Proposition 4.1. For 1> — (> € C\ R we have
1B(u, )| > 8]l H' (K|, (4.2)

where 8 = 8(1,§) > 0.

Proof. Let
o= LK), B=|usla(K)?, ©- =01+

Then
1B(u,u)|* = B*+ (0] +77)o — 20, 0B.

If 61 =0, v1 # 0 or 6; < 0, then the inequality (4.2) is obvious. Let o) > 0. Then y; s 0. Let € be such
that € < 1 and (1/¢*> — 1)o7 <7¥2. Then

2610 < 2B% + (1/€%)5302,

ISee the version of this result in [23, Remark 2.9.3].
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|B(u,u)? > B*(1—€%) + 0[] - (1/* - 1)oi] > 8(o +B7).

The proposition is proved. d

4.2. A strong solution to the problem (2.1). We introduce an unbounded operator A((, 1) in L»(K)
with domain

0

Dy, n—d>?2,
DA =<
DB(Z), n—d=2,

where B is taken from the interval (max{0,ImA; + 1}, 1), where A; = —(rt/c)i and o is the opening angle
of the corner K. We note that D(A) is independent of the choice of B. The operator A(L, ) is defined by

the formula
D(A) Sve A(C,T)V = L(D)WCaT)'

This operator admits the closure which will be denoted in the same way. In the sequel, we use only the
closed operator A(E, T). The domain of this operator is denoted by D(A({, ). Proposition 2.1 and Remark
2.2 lead to the following assertion.

Proposition 4.2. 1. [fn—d > 2, then D(A(C,T)) C HY(K; p). In the case n—d = 2, we have
DA D) € H'(K).

2. KerA({,t) =0.

3. The lineal ImA(G, ) is closed in La(K).

Our next goal is to show that ImA({,T) = L2(K). We need some results of the theory of elliptic
problems in domains with conical points (cf. [19] or, for example, [20]).
We consider the homogeneous problem

v=0 inK,

4.3
dyw=0 ondK. (4-3)

Let = |y|, and let ® = y/|y| € §"~¢~!. For every eigenvalue A of the pencil 2 we can construct a special
solution w. to the problem (4.3) that has the following asymptotic behavior:

Wk ~ P ()

in a neighborhood of O. For n —d = 2, starting with the double eigenvalue O of the pencil 2, we construct
two special solutions wg and wp, to the problem (4.3) with asymptotics o"'/2 and o.=1/2 Inr (recall that o
is the opening angle of the corner K in the plane R?). Namely (cf. [6]),

21=vi
W—k(y)=l'-(vk)(i|y| (G + )" Ky, (ilyly/ ~ER + )M @i v/ 1), (4.4)
W () = D(1+ V)2 (ily]y/ =[G + 7)™y, (v = [E2 + ) @i o/ ) 4.5)
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Here, vi = v/(n—d —2)? +4u;/2, Ky and I, are the modified Bessel functions of the third and first kind

respectively,
vz=exp((1/2)In|z| +iargz/2+im), argz € [0,2m).

For n—d =2 we have

woly) = &~ 2R ily| /- [C 2 + ), (4.6)

woi(y) = &2 Ko(ily|/ =52 + 72). (4.7)

Lemma 4.3 (cf. [19] or [20]). Let y € C>(R"~4), x = 1 in a neighborhood of O. Let a function u be
such that Yu € HBZ (K) for some B € R, L(Dy,{,v)u= f in K, and oyu = 0 on 0K, where f € CZ(K). Then
we have the following asymptotic expansion:

XU~ Y CLkX Wik, (4.8)
+k

where the summation on the right-hand side of (4.8) is taken over tk such that ywyy € Hé(K ). (For
n—d =2 the sum can contain the term coyxwo1-) To obtain u with accuracy of order up to O(r*) in a
neighborhood of the origin, it is necessary to take only those terms on the right-hand side of (4.8) that
decrease in a neighborhood of O slower than O(r™).

Proposition 4.4.
ImA(G,t) = La(K).

Proof. By Assertion 3 of Proposition 4.2, it suffices to show that C*(K) ¢ ImA({, 7).

Let f € CZ(K), and let u be a weak solution to the problem (4.1). By the known results of the theory
of elliptic boundary-value problems (cf., for example, [24]), we have u € C*(K\ O), L(Dy,{,T)u=01in
K, and oyu = 0 on 9K \ O. To prove the proposition, it suffices to check the inclusion u € D(A({,7)). O

Lemma 4.5.

(VP I9u@) P + [yl V2u(y)|*) dy < +ee, (4.9)
{vek: Iy]<1}

(1vu@)*/ Iy + | 7%u(y)?) dy < +<. (4.10)
{rek: [y[>1}

Proof (cf. [1, Lemma3.4]). Lety, € C(K). We assume that W« = 3, supp s C {y: 1/4 < |y| < 4}.
Any function u € HZ_(K \ O) such that dyu = 0 on 9K satisfies the following estimate (cf., for example,
[24] or [25]):

e P (RO < e{ lwas; La (K| + [[weees La(K)|]}- (4.1D)
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We introduce the partition of unity {zj}j =** and functions y; € C*(K \ 0) such that

j:—oo

supps; C {y: 2=« ly| < 2j+l},
suppy; C {y: 2772 < |y| < 277,

»j\j = 3;; MOTEOVeT,
|D%3¢j) + |D%| < Co2771%,
Making the change of variables y — Y = 2Jy, from the estimate (4.11) we deduce the inequality

S, 2060609 [ 08oeu) Py < of [y +274 [y . @12
K K K

a2
Taking into account the equality Au = (|{|? —t2)u — f and adding the inequalities (4.12) for j = 1,2,...,
we arrive at the estimate (4.10).

To obtain (4.9), we multiply (4.12) by 2%/ and take the sum over j =0,—1,.... O

It is easy to check that u € D(A(C,T)). Let  be the function from Lemma 4.3. We set y = 1 —% and
u = Yu + yu. From the inclusion u € H!(K) and Lemmas 4.5 and 4.3 it follows that

xu =y Y ckr™ D) +v, (4.13)

where the sum contains only those terms for which (n—d —2)/2 -l <ImM < (n—d—2)/2 and v =
O(r!~("=4-2)/2+€) for some £ > 0. For n—d =2 the sum can contain the term co®o(®) = coo™ /2.
The functions xr*®;(w) from the sum in (4.13) belong to D(A({,7)) by definition. We show that
v € D(A(L,7)). Let w,(x) = y(nx). We have

L(Dy, 8, t)(Wav) = YnL(Dy,{,T)v + 2V, Vv + Ay,v. (4.14)

It is clear that
L(Dy,§,7)v = L(Dy, §, 1) {xu — x Y cxr™ @y (@)} € La(K).

Therefore, the first term on the right-hand side of (4.14) tends to L(Dy, {,T)vin Ly(K) as n — oo, whereas
the second and third terms tend to zero in L»(K) because

e/n
”VWnVVH2 < en? / /"d*lr28~(n—d—2)dr,
('|./n
ca/n
1Ay,v||* < en® / —d—1 2—(n~d=2)+2¢ 4.
C]/n

Thus, Y,v — v and L(Dy,§,T)(ynv) — L(Dy,§,T)v. Therefore, v € D(A(,7)). Consequently, xu €
D(A(E,7)). The inclusion yu € D(A(C,T)) is established with the help of the sequence ¥,Wu, where
%n € CZ(R"4), %a(x) = 1 for x| € n, and ¥ (x) =0 for |x} > n+1. d
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Definition 4.6. By a strong solution to the problem (4.1) with f € L,(K) we mean a solution u to the
equation A(C,t)u = f.

Propositions 4.2 and 4.4 imply the following assertion.

Theorem 4.7. For any f € Ly(K), Y> 0, { € RY, and 6 € R there exists a unique strong solution u to
the problem (4.1). For n—d > 2 we have

PllviHo (K: I < cllAG, o) La ()P, (4.15)
and for n —d =2 we have

7 [I0)P + 170 dy < AT La(K)]. @.16)
K

In (4.15) and (4.16), the constant c is independent of ¥,{ and o.

4.3. Formulas for the coefficients in the asymptotic expansion (4.8). Let f € C°(K), and let u be
a strong solution to the problem (4.1). Then

Xu ~ ZCkXW+k,
k

where only the summands with nonnegative k occur in the sum. The following assertion follows from the
general results [26] (cf., also [20]) about the coefficients of asymptotic expansions of solutions to elliptic
problems in a cone.

Lemma 4.8. We denote by wy(,T) and wo)(,T) the functions from (4.4) and (4.7) with T instead of .
Then

= (f, Wk(af))Lg(K)- 4.17)
For n —d =2 the coefficient of wy is as follows:

Co=(f,W01(,T))L2(K). (4.18)

§ 5. The Boundary-Value Problem in a Cone in the Scale of Weight Spaces

We introduce a scale of function spaces in accordance with the estimates (2.10) and (3.15). We
denote by DHp ,(K; p) the space equipped with the norm

2
193 DHy oK)l = gy HE g (K )P+ Pl HE o (K p)P) 2 61
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for n —d > 2 and with the norm

q+2
llv: DHg o(K: p)l| = (p—nrﬁ-lxpv:Lz(K>||2+ 3 1A IK (v): La (K2
k=1

1/2
P K ) 52)

forn—d=2.
We introduce the space RHg , (K; p) equipped with the norm

2

q . . 1/
£+ RHp,o(K: p)ll = ( 3, (/0 HE ) (Kip)IP + (pl“ﬁﬂ/w*‘)z||f;Lz<K>n2) :

= (5.3
For fixed p and vy the norm (5.3) is equivalent to the norm
(£ HE., (K3 PP+ [L£5 L2 (K)|P) 2. (54)

0
In RHp 4(K; p), we introduce an unbounded operator v — L(Dy,,T)v with domain Dg if n—d > 2
0
and Dg(2) if n —d = 2. This operator admits the closure which will be denoted by Ag (G, 7).

The following assertion follows from the estimates (2.10) and (3.15).

Proposition 5.1 (cf. [2, Proposition 5.1]). Let B< 1 forn—d >2and B< 1 forn—d =2. Let
the line ImA =B — 1+ (n—d —2)/2 do not contain points of the spectrum of the pencil Y. Then for any
g=0,1,2,... the following assertions hold.

L. DAB.(](CJ) C DA(E, 7).
2. KerAp 4(5,7) = 0.
3. The lineal ImAg ,(C, ) is closed in RHp ,(K; p).

Our goal is to describe the lineal ImAg ,(,7). Let f € RHp ,(K;p), fu € CZ(K), fa — f in the
RHg ,(K; p)-norm. Let L(Dy, &, T)un = fu, vt = 0 on 0K, u, € D(A(C,T)). Let P satisfy the assumptions
of Proposition 5.1. We set

Vp =Up— Z (ﬁhw—-j()’f)>wj7 (5.5)
jEJﬁ

where
JB={j:(n—d—2)/2>Im?\.j> B—1+(n—d-2)/2}

ifn—d>2, and
Jﬁ={j20>lmlj>B—l}UA

ifn—d=2. Here, A=0 if §>0and A = {0} if B<O0. If n—d =2 and B < 0, then the coefficient at wy
in (5.5) should be replaced with (f5,wo1(,7)).

Lemma 5.2. Forany ¢ =0, 1,... we have v, € DAg 4(L, 7).
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The proof is similar to the proof of Proposition 4.4 and is left to the reader.

From (5.5) it follows that

LDy, 5 tn = fa— Y, {(fasw—j(,T))L(Dy, §,7) (xw})- (5.6)

=l

It is easy to see that the functionals (f,,w—;(,7)), j € J, are continuous in the space RHg ,(K; p).
Therefore, the right-hand side of (5.6) tends to the quantity

f= 2 A wo LDy, §, 1) (0w))

Jedp

in RHp 4 (K;p) asn — co. By Lemma 5.2 and the estimates (2.10) and (3.15), the sequence v, converges
to vo € DHg 4(K; p) in the DHp ,(K; p)-norm. Thus, for any function f € RHg ,(K; p) we have

Aﬁ,q(C’T)VO =f- z (fv W—j(’f))L(D)”CvT)(XWj)v (5.7)

=
where vo € DAg ,(§, 7). Thus, we have proved the following assertion.

Proposition 5.3.
ImAB'q(K;p) = {f € RHB#I(K;I)) :Vje JB<f’ W_j(,f» = 0}

We recall that if n —d = 2 and B < 0, then for w_o(,T) we take the function wo;(,).

Definition 54. By a strong (B, q)-solution to the problem (4.1) with the right-hand side f €
RHg ,(K; p) we mean a solution « to the equation

AB,([(Cat)“ = f

We summarize the results of this section.

Theorem 5.5. 1.Let 1 2 B>ImA|+1—(n—d—2)/2forn—d > 2, andlet 1 > B > max{0,ImA; +1}
for n—d = 2. Then for every function f € RHg ,(K; p) there exists a unique strong (B,q)-solution u to the
problem (4.1) satisfying the following estimate:

s DF o (K: P < (B, ) 1+ REp o (K: )| 538)

2. Suppose thatk € N, B € (ImMey1+1—(n—d —2)/2, ImM+1—(n—d —2)/2), and n—d > 2.
Then a strong (B,q)-solution exists only if f € RHp ,(K; p) satisfies the condition

(Fowi(,D) =0, j=1,2,...,k (5.9)

A strong (B, q)-solution is unique and satisfies the estimate (5.8).

3. Letn—d =2, B € (ImXA4) + 1,ImA; + 1). Consider two cases:
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@p>0,
(b) B <O.

In case (a), a strong (B, q)-solution exists only if f satisfies the condition (5.9). In case (b), a solution
exists only if f satisfies (5.9) and the following condition:

(f,wo1(,T)) =0. (5.10)

A strong (B, q)-solution is unique and satisfies the estimate (5.3).

4.If f € RHp 4(K; p) and a strong (B,q)-solution exists, then this solution is a strong solution to the
problem (4.1).

§ 6. Asymptotic Expansions of Solutions to the Problem in a Cone

We note that Lemma 5.2 remains valid if the functions w; in (5.5) are replaced with partial sums of
the series

(@ )
22mmIT(m+v;+1) (6.1

wi(,1) =T(1+v)) Y M®(w) 3

m=0

with sufficiently large number of terms (cf. (4.5) and [27, Sec. 7.2.2]). These partial sums will be denoted
by w’}’ (»,T) (N is the number of terms of the series (6.1) occurring in the partial sum). Thus, formula (5.7)
remains valid if w; is replaced with WIIV for sufficiently large N.

To derive further estimates, it is convenient to deal with the normed parameter (,t) and consider
the problem (2.2). By (5.7), if the right-hand side F of the problem

L(Dy,0)U =F inKk,

6.2)
owU=0 onodK

satisfies the condition F' € RHp ,(K; 1), then the strong solution U to the problem (6.2) is represented in
the form

U=y (Fw_;(,o)wl(,60)+V, (6.3)
jEJﬁ

where V is a (B, g)-solution to the problem (6.2) with the right-hand side

F':=F— L(Dv,e){x > (F, w_,-(,é»w’](,e)},

jEJIS

8=(C/p,7/p), 0=1(§/p,7/p)

It is clear that
|F'; RHp o(K; )|| < cl|F; RHg o(K; 1),
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where the constant ¢ is independent of 6. Hence
IVsDHg 4(K; 1)|| < c||Fs RHg 4(K; 1) (6.4)
We return to the variable y =1/p. We set

upy) =Ulpy), vO)=V(py), f0)=pF(py).

The problem (6.2) becomes the problem (4.1). In the new variable, formula (6.3) takes the form

u(y) =%p0) 2, (Fsw-i(.EDWY (0,6, 7) +v(3) (6.5)

=/

(we used formulas (6.1), (4.4) and the relation Aj +A—; = i(n — d — 2)), where ,(y) = x(py).
It is easy to compute that

1Fs RHg ((K: 1)I|? = p"~ 44| £ RH} 4 (K p)|2, (6.6)

IV: DHp (K: DIF = p"*+2~4lv: DHg o (K p)- (6.7)
Thus, we have proved the following assertion.

Theorem 6.1. Ler B satisfy the assumptions of Proposition 5.1, and let f € RHp ,(K:p). Then the
strong solution u to the problem (4.1) is represented in the form

u0) =150) 3, o (DT +v) 3, Lo " oy ) (68)

Jel m= 77"’m'l—' m+v +1) J

where Jp is defined before Lemma 5.2, N; are sufficiently large integers, and v satisfies the estimate

lv: DHp o(K: p)I| < cll 3 RH o (K: Pl (69)

§ 7. The Problem in a Wedge

The results concerning the problem in a wedge is obtained by using the inverse Fourier transform
from the assertions about the problem with parameters in a cone.

We consider the problem (0.1), (0.2) for f € V(? (0:7), v> O (cf. the definition of the norm in (1.5)).
Let #(,£,T) be a strong solution to the problem (2.1). The function

Ll(y, ) t) = F‘(Z,»L)_,(:J)l’?(y, C7 T)

is called a strong solution to the problem (0.1), (0.2).
By Theorem 4.7, the following assertion holds.
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Theorem 7.1. For any f € Vg (g;7Y) and 'y > O there exists a unique strong solution u to the problem
(0.1), (0.2). Forn—d > 2 we have

s Vo (257) < ellfs Vo @)l
and for n —d =2 the following inequality holds:
Y exp(=1) Y ey L2(Q) | < I3V ().

The constant c is independent of Y > 0.

Let a function ¢ € C*(R" ) be equal to 1 in a neighborhood of the vertex O of the cone K. We
introduce the operator

Xu)(32,1) = Fgy o X(PY)Fe (g iyu (0, 2, 1)

We set
(Au)(y,2,1) = F(E,i)—>(;,,)PF(:’,r’)—>(§,t)“()’7 Z,r).
For B €R,y>0,¢=0,1,... we introduce the space RVp ,(Q;y) equipped with the norm
Z 2 ] 2 2 1/2
i L, o s
1f: RVpq (@)l = ( S YN FVET (@IP 720 A g v (o) ) '
j=0
The space DVj 4(Q : v) is equipped with the norm
q+2 1 2
o DV @) = (s V2 (@i 2+ Pl Vi @sP)
for n —d > 2 and the norm

DY @0IF = [ {71~ i, G2 La(KOI1

Pd+l

q+2
+ 3 P72V (i, 6, 7Y LK) P} dCd o+ |

s=1

1 2
VI @I
forn—d =2. Let u(,{,7) be a strong (B, g)-solution to the problem (2.1). The function

u(n31) = Fig . #0,8,7)

is called a strong (B, q)-solution to the problem (0.1), (0.2).
The following assertion is obtained from Theorem 5.5.

Theorem 7.2. 1. Let 1 > B >ImA+1— (n—d —2)/2ifn—d > 2, andlet 1 > > max{0,ImA; + 1}
ifn—d>2 Lety>0,q=0,1,.... Then for every function f € RV ,(Q,Y) there exists a unique strong
(B, q)-solution u to the problem (0.1), (0.2) satisfying the following estimate:

llu; DV (@M1 < c(B ) fs RV o (251, (7.1)
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where the constant c is independent of ¥ > 0.

2. Suppose that k€ N, B € (ImMy) + 1+ (n—d—2)/2,ImM+ 1+ (n—d—2)/2), and n—d > 2.

Then a strong (B, q)-solution exists only if f € RVp ((Q;Y) satisfies the conditions
FOLDw-i (5D =0, j=12..k (72)

forall{ e R4, © =6 —iy. Astrong (B,q)-solution is unique and satisfies the estimate (7.1).

3. Suppose thatn—d =2, B € (ImAgy + L, ImA; + 1). Consider two cases:

(@p>0,

®p<o.

In case (a), a strong (B, q)-solution exists only if f € RV ,(Q;Y) satisfies (7.2). In case (b), a strong
(B, q)-solution exists only if f satisfies (7.2) and the condition (f(,{,7),wo01(,{,7)) =0 for all { € R,
T =G —iY. A strong (B, q)-solution is unique and satisfies (7.1).

4. Any strong (B,q)-solution is a strong solution. If there exist strong (B,q)- and (B, q’)-solutions,
then they coincide.

Before the formulation of the theorem about the asymptotics of solutions to the problem (0.1), (0.2),
we prove the following lemma.

Lemma 7.3. The coefficient ¢j({,t) = (f,w—;(,C,T)) in the asymprotic expansion (6.8) satisfies the

estimate

lej (6, T)| < cllfs RHp 4 (K: p)|| p*-i4B=(n=72, (7.3)

Proof. In the notation of Sec. 6, the following estimate holds:
[(F, w—1(,B)] < cllF: RHp o (K: D). (7.4)

Taking into account the relations (6.6) and (4.5) and the equality f(y) = p*F(py), we obtain (7.3) from
(7.4) by making the change of variables 1 = py. |

Lemma 7.3 and Theorem 6.1 imply the following assertion.

Theorem 7.4. Let B < 1 (B < linthecasen-d=2), and let the line InA =B — 1+ (n—d —2)/2 do not
contain points of the spectrum of the pencil . Lety> 0, f € RVg ,(Q;Y). Then a strong solution u to the
problem (0.1), (0.2) is represented in the form

& (R =AYyl
22"miT(m+v;+1)

u(y,z,t) = Y, D1+ v))yf*@;(w) X&)z ) +(nz),  (1.5)

JEJ m=0
where
(I)(y, 3 t) = F(Z,i)._,(:,,)(P(Ya Cn T)?

-~ (7.6)
Cj(C,‘C) = (f(’g”r)?W—j(’c’f))Lz(K)



and the function (z,t) — exp(—1)&(z,1) = c"}(z,t) satisfies the inequality
1€ D2 RIFY|| < o £ RHp (@) (1.7)
The remainder V¥(y, z,t) in (7.5) satisfies the estimate

1903, 2,1); DV ((Q: V)| < €l|.fs RHp (@)l (7.8)
The constant ¢ in (7.7) and (7.6) is independent of Y > 0.

Remark 7.5. As is known (cf., for example, [20]), the operator X from formula (7.5) is the operator
of smooth extension of functions defined on the edge M x R (cf. 1.2) inside the wedge Q = X x R. If
¢; is a sufficiently smooth function (say, B is a negative number with large modulus (cf. (7.6))), then the
principal term in the jth summand in (7.5) can be written in the form ¢ j(:,t)rn‘f ¥i(o).

§ 8. Explicit Formulas for the Coefficients of Asymptotics

With the spectal solution w_j (wg) to the homogeneous problem for the Helmholtz equation in the
cone (cf. (4.3)) we associate the special solution

Wor = Fy - Wor = Figay_ywor)

to the homogeneous boundary-value problem for the wave equation in a wedge. The following lemma
was established by the authors, together with S. I. Matyukevich.

Lemma 8.1. Suppose that 1;; , .\(t) is the characteristic function of the set [s,+o0), F(a,b,c,x) is a
pp [syFe0) ’
hypergeometric function, d /dt is the generalized differentiation operation,

Ny=N(d,vi) =[d/2+V]+1, 8=0(d,v) =N, —d/2—v, r=]y|, e=y/}.

Then the following assertions hold.
1. Ford > 1

W 23/2_Vk_ekn
50 = F e+ 172)

Ny
X O (o) (—5;) {l[m#m) (,)(,2 _ |Z|2 _ rl)ek—l/z

,ka-f‘i}._k( IZIZ + r2)~(Vk+ek+ll/2)/2

X F((8 — Vi) /2, Ok + Vi) /2,0 + 1/2,1 =2/ (] + 7))} 8.1
2. Ford=0
I i ST e d\M 2 2\8—1/2
W—k(yvt) - F(Vk)r(9k+ l/2)r o I\q)k(m) (E) {l[l’,+°°)(r)(t —I") g
X F((8k = Vi) /2, (B +Vi)/2,0c + 1/2,1—12/F)}. (8.2)
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3. Ford=2I1=1,2,...,
1
Wor (1) = o™ /2(2m) 2 (|22 + )“’/’(d,) {1[\/@,+m)(t)(f2—'2—IZI2)"

x cosh[larcosh(t/ ]:F-!—rz)]}. (8.3)

4. Ford=2/+1,1=0,1,...,

1+1
Waa0a) =0 P af )11 (£

$ L g OF (1/4,1/4,1,1=2/ (P + ) } (8.4)

5.Ford=0

Woir(y,1) = a_l/z(zﬂ)l/zl[r,-x-w)(f)(fz -r)h (8.5)

Proof. By (4.4) and (4.7), we have

W_i(y, 2 1) = Q1Y% T (vi) )4 D) S v, (1, 2,7), (8.6)
WOl(y7:9r) = a_l/ZSd,O(ru Z,t), (87)
where
A"
Sun(ran) = @O [ deesagie) [ (in/2 =R ) K (i IR ) explit) ot

Imt=—vy Fd (8.8)

ford > 1 and
Sow(nt) = (21)"1/2 / exp(iwr) (irt)" Ky (irt) d (8.9)

lmf=—y

ford =0.
For d > 2 we pass to the spherical coordinates in the interior integral in (8.8) (the north pole is

located at the point z/|z|). We have

+Foo—yi

\"
Saw(nzt) = (2m)~@+/2 / dtexp(itt /dpp" l<zr\/':- p> ) Kv<ir« /Tz_p2>
—oo—yi
n 43
X [/exp(ip|z| cosel)sin”"zeldel] {?Jtn/sinkede}.
0 k=1y

(8.10)
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By [27, Sec. 7.12, formula (9)], the integral in the square brackets is equal to the quantity

24D R (d = 1)/2gp 1Pl P12,

where Jy is the Bessel function of the first kind. The expression in the square brackets is equal to the
quantity 2r(4=1/2 /T ((d — 1)/2) (cf., for example, [28, Sec. 1.2, formula (9)]). Hence

Sd,v(",:,t)r-(2n)"1/2]zl(2"1)/2 / dtexp(itt)

Imt=—y
X 79"/ 2(iry/ 7 = p? ) Ku(iry/ @ = p* Jajr-1 (pl2]) dp- (8.11)
0
Ford=1
Siv(r ) / dtexp(itt) / 02\ Ky (iry/ % — p? ) cos(pl2]) dp.
Imt=—y

By [29, Sec. 5.8, formula 5.8.2], we have

cos(plz]) = (mplzl/2) /21 ;2 (plz])-

Consequently, formula (8.11) is also valid for d = 1. Making the change of variables T=isin (8.11) and
setting u = —v, we find

Y-ieo

Savlnar) = (1) V202 [ ds exp(-a)
Y+ioo
o
x / P +p") MK, (r\/ s +92>Jd/2_1(plzi)dp- (8.12)
0

The interior integral in (8.12) is the Sonin—Hegenbauer integral (cf. [27, Sec.14.2, formula (46)]) and is

equal to
P PSP (P 4 )TV a1+ 1),

Therefore, for d > 1 we have
Sav(nan) = o)A 4P [ exp(-a)s K (S\/ 2 +r2) ds.
Res=y (8.13)
For d = 0 the change of variables s = it in (8.9) leads to the equality
Sov(nt)= (27\:)_1/21"‘er / exp(st)s’ Ky(rs)ds. (8.14)
Res=y

We set
N=N(d,v)=[d/2+V]+1, 6=06(d,v)=N({d,v)-d/2—-v, d=0,1,....



Then (in the sense of distributions)

22 —vz-asaf 4\" - -
G il ) S G WA e )

ford 2 1 and

(8.15)

d

N
Sov(rt) = (2n)1/2r" (E) Ls_,(_,)(s"eKv(sr)) (8.16)

ford=1. Forv=0,d=2I,1=1,2,..., we have

2 _ipfdY
Sao(nar) = )PP+ AR (5) o (M(siB 7)) @an

Forv=0,d=21+1,1=0,1,..., we have

. o NG o e
Suo(n2) = oA+ 22 () o (5 iyl ) ).

(8.18)
Forv=0,d =0 we have
S()’()(r, T) = (ZR)I/ZLJ._,(_,) (Ko(sr)), (8.19)
where '
Yioo
Ls—ru(s) = (2mi)~! / exp(st)u(s)ds
Y—ioo

denotes the inverse Laplace transform. The Laplace transforms in (8.15)—(8.19) were computed in [30,
Sec. 5.15, formulas (12) and (15)]. Namely,

oo (7 orapa (VIR ) ) = 1y oy (V0 122 47) 07
x (12— |z = P V2R(0/2 = v/2,0/2+v/2,0 + 1/2,1 =1/ (|2]> + 7)), (8.20)

Lo (5™ OKA57)) = Lo ()20 /T(O+ 1 /2027002 — 20112

X F(8/2-v/2,0/24+v/2,04+1/2,1-1*/F), , (8.21)
L) (K: (S\/ J2? +r ) ) =1 ey D =P =12
x cosh[/arcosh(r/(|z]> + )"/, (8.22)

oo (572 (3l ) ) =1y s g /2 (1 )
X F(1/4,1/4,1,1=2/(|z+ ), (8.23)
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Lgr—ry(Ko(sr)) = 1jy o) (1) (2 = 7). (8.24)

It remains to use (8.6) and (8.7). O

of the

semib

Remark 8.2. From the formulas of Lemma 8.1 it follows that

() W_e(,2,1) =0if t < /P + 2%
(2) singsupp Wi C {(,5,1) € R* i1 = /PP + 7).
The same assertions are valid for Wy,.
Owing to Remark 8.2, we can obtain some additional information about the coefficients
¢j(zt) = / dz / dr / dyf(yzut)W-j(yz—21,t—1) (8.25)
pd L

asymptotic expansion (7.5) obtained in Theorem 7.4.
Proposition 8.3. 1. For the coefficients &;(z,t) of the asymptotics the “leading edge effect” holds:
t <inf{|x|+s: (x,5) € supp f} = ¢&;(z,1) =0.

2. If the singular support of the right-hand side f is bounded with respect to spatial variables and
ounded from above with respect to the time variable, then the coefficients &;( ) are infinitely smooth

functions in the domain (cf. (7.7))

[\

{Gzt) eR™M it > sup{ty+/IyP+lz—uls (%21,11) € singsupp f}.
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