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POLYHEDRAL SURFACES

AND DETERMINANT OF LAPLACIAN

ALEXEY KOKOTOV

(Communicated by Varghese Mathai)

Abstract. An explicit formula for the determinant of the Laplacian on a
compact polyhedral surface of genus g > 1 is found. This formula generalizes
previously known results for flat surfaces with trivial holonomy and compact
polyhedral tori.

1. Introduction

The main goal of the present paper is to study the determinant of the Laplacian
(acting in the trivial line bundle) as a functional on the space of Riemann surfaces
with conformal flat conical metrics (polyhedral surfaces).

In [10] the determinant of the Laplacian was studied as a functional

Hg(k1, . . . , kM ) � (X , ω) �→ detΔ|ω|2

on the space Hg(k1, . . . , kM ) of equivalence classes of pairs (X , ω), where X is a
compact Riemann surface of genus g and ω is a holomorphic one-form (an Abelian

differential) with M zeros of multiplicities k1, . . . , kM . Here detΔ|ω|2 stands for
the determinant of the Laplacian in the flat metric |ω|2 having conical singularities
at the zeros of ω. The flat conical metrics |ω|2 considered in [10] are very special:
the divisor of the conical points of this metric is not arbitrary (it belongs to the
canonical class of divisors) and the conical angles at the conical points are integer
multiples of 2π. Later, in [8], this restrictive condition has been eliminated in the
case of polyhedral surfaces of genus one (it should be noted that the case of genus
zero was studied in [2]).

Here we generalize the results of [10], [8], [2] to the case of polyhedral surfaces
of an arbitrary genus. The main result of the paper, the explicit formula for the
determinant, is given by equation (30) below. We derive it as a simple consequence
of the results from [10] and an analog of the Polyakov formula for the ratio of
determinants of Laplacians corresponding to two conformally equivalent flat conical
metrics.

2. Flat conical metrics on Riemann surfaces

2.1. Troyanov theorem. Let
∑N

k=1 bkPk be a (generalized; i.e., the coefficients
bk are not necessarily integers) divisor on a compact Riemann surface X of genus

g. Also let
∑N

k=1 bk = 2g − 2. Then, according to Troyanov’s theorem (see [18]),
there exists a (unique up to a rescaling) conformal (i.e. giving rise to a complex
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structure which coincides with that of X ) flat metric m on X which is smooth in
X \ {P1, . . . , PN} and has simple singularities of order bk at Pk. The latter means
that in a vicinity of Pk the metric m can be represented in the form

(1) m = eu(z,z̄)|z|2bk |dz|2,
where z is a conformal coordinate and u is a smooth real-valued function. In
particular, if bk > −1 the point Pk is conical with conical angle βk = 2π(bk + 1).

Let us outline a short proof of this theorem assuming for simplicity that all the
divisors gPk, k = 1, . . . , N are nonspecial (this means that there is no meromorphic
function with the only pole at Pk of multiplicity ≤ g) and g > 1.

Fix a canonical basis of cycles {ak,bk}gk=1 on X and let E(P,Q) be the prime-
form (see [5]). Let {vk}gk=1 be the basis of holomorphic normalized differentials
and denote by B the corresponding matrix of b-periods. Also let KP0 be the vector
of Riemann constants corresponding to a base point P0. Introduce real vectors

α, β via KP0 = Bα + β and let Θ
[
α
β

]
(z|B) be the Riemann theta-function with

characteristics α, β. Assume that the divisor gP0 is nonspecial (i.e. the point
P0 is not a Weierstrass point). Using the Riemann theorem on the zeros of the
theta-function it is easy to show that (cf. [6], p. 32)

FP0
(·) =

Θ2
[
α
β

] (∫ P0

· (v1, . . . , vg)
t|B

)
E2(·, P0)

is a Prym differential with unitary multipliers exp{−4πiαk}, exp{4πiβk} along the
basic cycles ak, bk respectively with a single zero of multiplicity 2g − 2 at P0.
(Notice that if the divisor gP0 is special, then FP0

≡ 0.) Now the Troyanov metric
is explicitly given by

(2) m =

N∏
k=1

|FPk
|

2bk
2g−2 .

Remark 1. The case when some conical point Pk is a Weierstrass point is a bit
more technical and we do not consider it here. Notice only that if the Riemann
surface X is hyperelliptic, then this situation is even more simple than the generic
one. Namely, let the corresponding algebraic curve be given by the equation y2 =∏2g+2

i=1 (x − xi). Then the Weierstrass point Pk coincides with one of the branch
points (say, (xj , 0)) and the Prym differential FPk

in (2) should be replaced by
the holomorphic one-form y−1(x − xj)

g−1dx which has the single zero at Pk of
multiplicity 2g − 2.

2.2. Distinguished local parameter. In a vicinity of a conical point the flat
metric (1) takes the form

m = |g(z)|2|z|2b|dz|2

with some holomorphic function g such that g(0) �= 0. It is easy to show (see, e.g.,
[18], Proposition 2) that there exists a holomorphic change of variable z = z(x)
such that in the local parameter x,

m = |x|2b|dx|2 .
We shall call the parameter x (unique up to a constant factor c, |c| = 1) distin-
guished. In case b > −1 the existence of the distinguished parameter means that
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in a vicinity of a conical point the surface X is isometric to the standard cone with
conical angle β = 2π(b+ 1).

In [18] it is proved that any compact Riemann surface with flat conformal conical
metric admits a proper triangulation (i.e., each conical point is a vertex of some
triangle of the triangulation). This means that any compact Riemann surface with a
flat conical metric is a Euclidean polyhedral surface, i.e., can be glued from Euclidean
triangles. On the other hand any compact Euclidean oriented polyhedral surface
gives rise to a Riemann surface with a flat conical metric. Therefore, from now on
we do not distinguish between compact (oriented) Euclidean polyhedral surfaces
and Riemann surfaces with conformal flat conical metrics.

3. Laplacians on polyhedral surfaces

Let X be a compact polyhedral surface with vertices (conical points) P1, . . . , PN .
The Laplacian Δ corresponding to the natural flat conical metric on X with domain
C∞

0 (X \ {P1, . . . , PN}) is not essentially selfadjoint and one has to choose one of
its selfadjoint extensions. From now on we denote by Δ the Friedrichs extension of
the Laplacian on the polyhedral surface X ; other extensions will not be considered
here.

3.1. Determinant of the Laplacian and analytic surgery.

Theorem 1 (see [4], [7], [10]). Let X be a compact polyhedral surface with vertices
P1, . . . , PN of conical angles β1, . . . , βN . Let Δ be the Friedrichs extension of the
Laplacian defined on functions from C∞

0 (X \ {P1, . . . , PN}). Then

(1) The spectrum of the operator Δ is discrete; all the eigenvalues of Δ have
finite multiplicity.

(2) Introduce the operator ζ-function

(3) ζΔ(s) =
∑
λk>0

1

λs
k

,

where the summation goes over all strictly positive eigenvalues λk of the
operator −Δ (counting multiplicities). One has the equality

(4) ζΔ(s) =
1

Γ(s)

{
Area (X )

4π(s− 1)
+

[
1

12

N∑
k=1

{
2π

βk
− βk

2π

}
− 1

]
1

s
+ e(s)

}
,

where e(s) is an entire function.

Theorem 1 opens a way to define the determinant, det∗ Δ, of the Laplacian on
a compact polyhedral surface. Namely since ζΔ is regular at s = 0, one can define
the ζ-regularized determinant of the Laplacian via the usual ζ-regularization (cf.
[16]):

(5) det∗Δ := exp{−ζ ′Δ(0)} .

Remark 2. In what follows the symbol det∗ is used to denote the (modified) zeta-
regularized determinant of an operator with zero modes. The symbol det refers to
the zeta-regularized determinant of an operator without zero modes.
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Equation (4) and the relation
∑N

k=1 bk = 2g − 2, bk = βk

2π − 1 yield

(6) ζΔ(0) =
1

12

N∑
k=1

{
2π

βk
− βk

2π

}
− 1 =

(
χ(X )

6
− 1

)
+

1

12

N∑
k=1

{
2π

βk
+

βk

2π
− 2

}
,

where χ(X ) = 2− 2g is the Euler characteristic of X .

It should be noted that the term χ(X )
6 − 1 at the right-hand side of (6) coincides

with the value at zero of the operator ζ-function of the Laplacian corresponding to
an arbitrary smooth metric on X (see, e.g., [14], formula (5a) or [15]).

Let m and m̃ = κm, κ > 0 be two homothetic flat metrics with the same conical
points with conical angles β1, . . . , βN . Then (3), (5) and (6) imply the following
rescaling property of the conical Laplacian:

(7) det∗Δm̃ = κ
−(χ(X)

6 −1)− 1
12

∑N
k=1

{
2π
βk

+
βk
2π −2

}
det∗ Δm.

Let m be an arbitrary smooth metric on X and denote by Δm the corresponding
Laplacian. Consider N nonoverlapping connected and simply connected domains
D1, . . . , DN ⊂ X bounded by closed curves γ1, . . . , γN and introduce also the do-

main Σ = X \
⋃N

k=1Dk and the contour Γ =
⋃N

k=1 γk.
Define the Neumann jump operator R : C∞(Γ) → C∞(Γ) by

R(f)|γk
= ∂ν(V

−
k − V +

k ),

where ν is the outward normal to γk = ∂Dk, the functions V −
k and V + are the

solutions of the boundary value problems ΔmV −
k = 0 in Dk, V −|∂Dk

= f and
ΔmV + = 0 in Σ, V +|Γ = f . The Neumann jump operator is an elliptic pseudodif-
ferential operator of order 1, and it is known that one can define its determinant
via the standard ζ-regularization.

Let (Δm|Dk) and (Δm|Σ) be the operators of the Dirichlet boundary problem
for Δm in domains Dk and Σ respectively. The determinants of these operators
also can be defined via ζ-regularization.

Due to Theorem B∗ from [3], we have

(8) det∗Δm =

{
N∏

k=1

det(Δm|Dk)

}
det(Δm|Σ) det∗R {Area(X ,m)} {l(Γ)}−1,

where l(Γ) is the length of the contour Γ in the metric m.
An analogous statement holds for the flat conical metric. Namely let X be a

compact polyhedral surface with vertices P1, . . . , PN and g be a corresponding flat
metric with conical singularities. Choose the domains Dk, k = 1, . . . , N that are
nonoverlapping disks centered at Pk and let (Δ|Dk) be the Friedrichs extension of
the Laplacian with domain C∞

0 (Dk \Pk) in L2(Dk). Then formula (8) is still valid
with Δm = Δ (cf. [11] or see [13] for a more general result).

3.2. Polyakov and Alvarez formulas. We state Polyakov’s formula in the form

given in ([6], p. 62). Let m1 = ρ−2
1 (z, z̄)d̂z and m2 = ρ−2

2 (z, z̄)d̂z be two smooth
conformal metrics on X and let detΔm1 and detΔm2 be the determinants of the cor-
responding Laplacians (defined via the standard Ray-Singer regularization). Then

(9) log
det∗Δm2

det∗Δm1
= log

Area(X ,m2)

Area(X ,m1)
+

1

3π

∫
X
log

ρ2
ρ1

∂2
zz̄ log(ρ2ρ1)d̂z .
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We need also the following version (belonging to Alvarez) of (9) for surfaces with
boundary ([1]; see also [15]). Let X be a Riemann surface with smooth boundary
∂X and let (Δm1 |X ) and (Δm2 |X ) be the operators of the Dirichlet boundary
problems for Δm1 and Δm2 . Then

log
det(Δm2 |X )

det(Δm1 |X )
=

1

3π

∫
X
log

ρ2
ρ1

∂2
zz̄ log(ρ2ρ1)d̂z(10)

− 1

12π

∫
∂X

log
ρ2
ρ1

∂n log
ρ2
ρ1

ds1 −
1

6π

∫
∂X

k1 log(
ρ2
ρ1

)ds1 +
1

4π

∫
∂X

∂n log
ρ2
ρ1

ds1,

where kj and dsj are the geodesic curvature of ∂X and the length element of ∂X
corresponding to the metric mj ; n is the exterior normal.

3.3. Analog of Polyakov’s formula for a pair of conformally equivalent
flat conical metrics.

Proposition 1. 1 Let a1, . . . , aN and b1, . . . , bM be real numbers which are greater
than −1 and satisfy a1 + · · ·+ aN = b1 + · · ·+ bM = 2g− 2. Let m1 and m2 be two
conformally equivalent flat conical metrics on X ; let m1 have conical singularities at
P1, . . . , PN ∈ X with conical angles 2π(a1+1), . . . , 2π(aN+1) and m2 have conical
singularities at Q1, . . . , QM ∈ L with conical angles 2π(b1 + 1), . . . , 2π(bM + 1).
Assume also that the sets {P1, . . . , PN} and {Q1, . . . , QM} do not intersect.

Let xk be a distinguished local parameter for m1 near Pk and yl be a distinguished
local parameter for m2 near Ql (we omit the argument t).

Introduce the functions fk, gl and the complex numbers fk, gl by

m2 = |fk(xk)|2|dxk|2 near Pk; fk := fk(0),

m1 = |gl(yl)|2|dyl|2 near Ql; gl := gl(0).

Then the following equality holds:

(11)
det∗Δm1

det∗Δm2
=

∏N
k=1C(ak)∏M
l=1 C(bl)

Area (X ,m1)

Area (X ,m2)

∏M
l=1 |gl|bl/6∏N
k=1 |fk|ak/6

,

where C(ak) (resp. C(bl)) is the ratio of two determinants: the determinant of the
Laplace operator with Dirichlet boundary conditions on the right circular cone with
slant height 1

ak+1 (resp. 1
bl+1) and the angle 2π(ak+1) (resp. 2π(bl+1)) around the

apex and the determinant of the standard Laplacian Δ|dx|2 = 4∂x∂̄x with Dirichlet
boundary conditions in the unit disk D(1) = {|x| ≤ 1}.

Proof. Take ε > 0 and introduce the disks Dk(ε), k = 1, . . . ,M + N centered
at the points P1, . . . , PN , Q1, . . . , QM ; Dk(ε) = {|xk| ≤ ε} for k = 1, . . . , N and
DN+l(ε) = {|yl| ≤ ε} for l = 1, . . . ,M . Let hk : R+ → R, k = 1, . . . , N + M be
smooth positive functions such that

(1)∫ 1

0

h2
k(r)rdr =

{∫ 1

0
r2ak+1dr = 1

2ak+2 , if k = 1, . . . , N,∫ 1

0
r2bl+1dr = 1

2bl+2 , if k = N + l, l = 1, . . . ,M,

1The author thanks G. Carron and L. Hillairet for a significant improvement of the preliminary
version of this proposition (the idea of introducing constants C(ak)) and for pointing out to him
reference [17].
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(2)

hk(r) =

{
rak for r ≥ 1 if k = 1, . . . , N,

rbl for r ≥ 1 if k = N + l, l = 1, . . . ,M.

Define two families of smooth metrics mε
1, m

ε
2 on X via

mε
1(z) =

{
ε2akh2

k(|xk|/ε)|dxk|2, z ∈ Dk(ε), k = 1, . . . , N,

m1(z), z ∈ X \
⋃N

k=1Dk(ε) ,

mε
2(z) =

{
ε2blh2

N+l(|yl|/ε)|dyl|2, z ∈ DN+l(ε), l = 1, . . . ,M,

m2(z), z ∈ X \
⋃M

l=1 DN+l(ε) .

The metrics mε
1,2 converge to m1,2 as ε → 0 and

Area(X ,mε
1,2) = Area(X ,m1,2).

Due to the analytic surgery formulas one has

det∗Δm1 =

{
N∏

k=1

det(Δm1 |Dk(ε))

}
det(Δm1 |Σ) det∗R {Area(X ,m1)} {l(Γ)}−1,

(12)

det∗Δmε
1 =

{
N∏

k=1

det(Δmε
1 |Dk(ε))

}
det(Δmε

1 |Σ) det∗R {Area(X ,mε
1)} {l(Γ)}−1,

(13)

with Σ = X \
⋃N

k=1 Dk(ε) and analogous expressions for det∗Δm1 and det∗Δmε
1

Using these relations and the fact that the quantity det∗R/l(Γ) is a conformal
invariant, we obtain that

(14)
det∗Δm1

det∗Δm2
=

{∏N
k=1(Δ

m1 |Dk(ε))
}

{∏M
l=1(Δ

m2 |DN+l(ε))
}

{∏M
l=1(Δ

mε
2 |DN+l(ε))

}
{∏N

k=1(Δ
mε

1 |Dk(ε))
} det∗Δmε

1

det∗Δmε
2
.

Applying Polyakov’s formula to the last term, det∗Δmε
1

det∗Δmε
2
, in the right-hand side of

(14), one rewrites it as

Area(X ,m1)

Area(X ,m2)
exp

{
1

3π

N∑
k=1

(∫
Dk(ε)

(logHk)xkx̄k
log |fk|d̂xk(15)

+

∫
Dk(ε)

(logHk)xkx̄k
logHkd̂xk

)
− 1

3π

M∑
l=1

(∫
DN+l(ε)

(logHN+l)ylȳl
log |gl|d̂yl

+

∫
DN+l(ε)

(logHN+l)ylȳl
logHN+ld̂yl

)}
,

where Hk(xk) = ε−akh−1
k (|xk|/ε), k = 1, . . . , N and HN+l(yl) = ε−blh−1

N+l(|yl|/ε),
l = 1, . . . ,M . Notice that for k = 1, . . . , N the function Hk coincides with |xk|−ak
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in a vicinity of the circle {|xk| = ε} and the Green formula implies that∫
Dk(ε)

(logHk)xkx̄k
log |fk|d̂xk =

i

2

{∮
|xk|=ε

(log |xk|−ak)x̄k
log |fk|dx̄k

+

∮
|xk|=ε

log |xk|−ak(log |fk|)xk
dxk +

∫
Dk(ε)

(log |fk|)xkx̄k
logHkdxk ∧ dx̄k

}
and, therefore,

(16)

∫
Dk(ε)

(logHk)xkx̄k
log |fk|d̂xk = −akπ

2
log |fk|+ o(1)

as ε → 0. Analogously

(17)

∫
DN+l(ε)

(logHN+l)ylȳl
log |gl|d̂yl = −blπ

2
log |gl|+ o(1)

as ε → 0.
On the other hand, the Alvarez formula implies that

log
det(Δmε

1 |Dk(ε))

det(Δ|Dk(ε))
=

1

3π

∫
Dk(ε)

(logHk)xkx̄k
logHkd̂xk − a2k

6
log ε+

ak
3

log ε− ak
2

and

log
det(Δmε

2 |DN+l(ε))

det(Δ|DN+l(ε))
=

1

3π

∫
DN+l(ε)

(logHN+l)ylȳl
logHN+ld̂yl

− b2l
6
log ε+

bl
3
log ε− bl

2
,

where k = 1, . . . N , l = 1, . . .M and (Δ|Dk(ε)) is the operator of the Dirichlet
problem in the disk Dk(ε) for Δ = 4∂z ∂̄z.

Thus, the right-hand side of (14) has the asymptotics

Area(X ,m1)

Area(X ,m2)

{∏N
k=1 det(Δ

m1 |Dk(ε))
}

{∏M
l=1 det(Δ

m2 |DN+l(ε))
}

{∏M
l=1 det(Δ|DN+l(ε))

}
{∏N

k=1 det(Δ|Dk(ε))
} ∏N

k=1 |fk|−ak/6∏M
l=1 |gl|−bl/6

(18) × ε
∑N

k=1(
a2
k
6 − ak

3 )−
∑M

l=1(
b2l
6 − bl

3 )(1 + o(1))

as ε → 0.
Due to [19], formula (28), one has

(19) det(Δ|Dk(ε)) = ε−1/3det(Δ|Dk(1))

with

(20) det(Δ|Dk(1)) = 2−1/6π−1/2 exp{−2ζ ′(−1)− 5/12} .
On the other hand, the disk Dk with metric |xk|2ak |dxk|2 is isometric to the right

circular cone K(ε, ak) with the slant height εak+1

ak+1 and the angle 2π(ak + 1) around

the apex. Similarly to (6) it is easy to show that the value of the operator ζ-function
of the Laplace operator on this cone (with Dirichlet boundary conditions) at zero

equals to 1
12

(
1

ak+1 + ak + 1
)
and, therefore,

(21) det(Δm1 |Dk(ε)) = ε
− 1

6 (ak+1)
(

1
ak+1+ak+1

)
det(Δ|K(1, ak)) .
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Now sending ε to 0 in (18) and using (19), (21), one arrives at (11). �
Remark 3. Notice that a rather lengthy expression for det(Δ|K(1, ak)) as a function
of ak is given in ([17], Theorem 1). This together with (19, 21) gives explicit
expressions for the factors C(ak), C(bk) from (11) which we do not reproduce here.

Remark 4. It is instructive to check that (11) agrees with the rescaling property
(7).

The following simple lemma (“on three polyhedra”) is a corollary of (11).

Lemma 1. Let X be a compact Riemann surface of an arbitrary genus g and let l,
m and n be three conformal flat conical metrics on X . Suppose that the metric l has
conical points P1, . . . , PL with conical angles 2π(a1 +1), . . . , 2π(aL +1), the metric
m has conical points Q1, . . . , QM with conical angles 2π(b1 + 1), . . . , 2π(bM + 1)
and the metric n has conical points R1, . . . , RN with conical angles 2π(c1 + 1), . . . ,
2π(cN +1). (All the points Pl, Qm, Rn are supposed to be distinct.) Then one has
the relation

(22)

N∏
i=1

[
l

m
(Ri)

]ci L∏
j=1

[m
n
(Pj)

]aj
M∏
k=1

[n
l
(Qk)

]bk
= 1 .

Proof. Rewrite the identity

det∗Δl

det∗Δm

det∗Δm

det∗Δn

det∗Δn

det∗Δl
= 1

using formula (11). �
Remark 5. The above lemma also follows from the Weil reciprocity law for harmonic
functions with logarithmic singularities.

3.4. Flat surfaces with trivial holonomy and moduli spaces of holomor-
phic differentials on Riemann surfaces. We follow [12] and Zorich’s survey
[20]. Outside the vertices a Euclidean polyhedral surface X is locally isometric to
a Euclidean plane, and one can define the parallel transport along paths on the
punctured surface X \ {P1, . . . , PN}. The parallel transport along a homotopically
nontrivial loop in X \ {P1, . . . , PN} is generally nontrivial. If, e.g., a small loop
encircles a conical point Pk with conical angle βk, then a tangent vector to X turns
by βk after the parallel transport along this loop.

A Euclidean polyhedral surface X is called a surface with trivial holonomy if
the parallel transport along any loop in X \ {P1, . . . , PN} does not change tangent
vectors to X .

All conical points of a surface with trivial holonomy must have conical angles
which are integer multiples of 2π.

A flat conical metric g on a compact real oriented two-dimensional manifold
X equips X with the structure of a compact Riemann surface. If this metric has
trivial holonomy, then it necessarily has the form g = |ω|2, where w is a holomorphic
differential on the Riemann surface X (see [20]). The holomorphic differential ω
has zeros at the conical points of the metric g. The multiplicity of the zero at the
point Pm with the conical angle 2π(km + 1) is equal to km.2

2There exist polyhedral surfaces with nontrivial holonomy whose conical angles are all integer
multiples of 2π. To construct an example take a compact Riemann surface X of genus g > 1 and
choose 2g − 2 points P1, . . . , P2g−2 on X in such a way that the divisor P1 + · · · + P2g−2 is not

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



POLYHEDRAL SURFACES AND DETERMINANT OF LAPLACIAN 733

The holomorphic differential ω is defined up to a unitary complex factor. This
ambiguity can be avoided if the surface X is provided with a distinguished direction
(see [20]), and it is assumed that w is real along this distinguished direction. In
what follows we always assume that surfaces with trivial holonomy are provided
with such a direction.

Thus, to a Euclidean polyhedral surface of genus g with trivial holonomy we put
into correspondence a pair (X , ω), where X is a compact Riemann surface and ω
is a holomorphic differential on this surface. This means that we get an element of
the moduli space, Hg, of holomorphic differentials over Riemann surfaces of genus
g (see [12]).

The space Hg is stratified according to the multiplicities of zeros of w.
Denote by Hg(1, . . . , 1) the stratum of Hg, consisting of differentials ω with

2g − 2 simple zeroes P1, . . . , P2g−2; the divisor of the differential ω is given by

(ω) =
∑2g−2

m=1 Pm.
As in [6] introduce

• the following holomorphic multivalued (g/2,−g/2)-differential σ(P,Q):

(23) σ(P,Q) = exp

{
−

g∑
α=1

∮
aα

vα(R) log
E(R,P )

E(R,Q)

}
;

• the following holomorphic multivalued g(1− g)/2-differential on X :

(24) C(P ) =
1

W [v1, . . . , vg](P )

g∑
α1,...,αg=1

∂gΘ(KP )

∂zα1
. . . ∂zαg

vα1
. . . vαg

(P ) ,

where

(25) W(P ) := det1≤α,β≤g||v(α−1)
β (P )||

is the Wronskian determinant of holomorphic differentials at the point P .

Denote by AP (·) the Abel map with the base point P . Then one has the relation

(26) A((ω)) + 2KP + Br+ q = 0

with some integer vectors r and q. Let us emphasize that the vectors r, q as
well as the prime form and the differentials C and σ depend on the choice of the

fundamental polygon X̂ .
The following theorem was proved in [10].

Theorem 2. Let a pair (X , ω) be a point of the space Hg(1, . . . , 1). Then the

determinant of the Laplacian Δ|ω|2 is given by

(27) det∗Δ|ω|2 = δgdet�BArea(X , |ω|2)|τg(X , ω)|2,
where δg is a constant depending only on the genus g and τg(X , ω) is defined up to
a unitary multiplicative factor (and not a choice of the fundamental polygon!) by
the formula

(28) τ−6
g (X , ω) = e2πi〈r,K

P 〉C−4(P )

2g−2∏
k=1

σ(Pk, P ) {E(Pk, P )}(g−1)
.

in the canonical class. Consider the flat conical conformal metric m corresponding to the divisor
P1 + · · ·+ P2g−2 according to the Troyanov theorem. This metric has nontrivial holonomy while

all its conical angles are equal to 4π.
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Here P is an arbitrary point of X and the integer vector r is defined by (26); the
values of the prime form and σ at the zeros Pk of the differential ω are calculated

in the local parameter xk(Q) =
√∫ Q

Pk
ω ; the values of the prime form and σ at

the point P are taken in the local parameter z(Q) =
∫ Q

ω; the expression (28) is
independent of the choice of P .

Remark 6. In [9] it was shown that the factor δg in (27) admits the representation

(29) δg = (2π)−4/3κg−1
0 ,

where κ0 is an absolute constant which could be expressed through spectral char-
acteristics of some model operators.

3.5. Determinant of the Laplacian on an arbitrary polyhedral surface of
genus g > 1. From (11) and (27) follows the main result of the present paper:

Theorem 3. Let X be a compact Riemann surface of genus g > 1 and let m be
a conformal flat conical metric on X with conical points P1, . . . , PN with conical
angles 2π(a1 + 1), . . . , 2π(aN + 1). Also let ω be a holomorphic one-form on X
with 2g − 2 simple zeros Q1, . . . , Q2g−2. Let xk be a distinguished local parameter
for m near Pk and yl be a distinguished local parameter for ω near Ql. Introduce
the functions fk, gl and the complex numbers fk, gl by

|ω|2 = |fk(xk)|2|dxk|2 near Pk, fk := fk(0),

m = |gl(yl)|2|dyl|2 near Ql, gl := gl(0).

Then

(30) det∗Δm = δg

∏M
k=1C(ak)

C(1)2g−2
Area (X ,m)det�B |τg(X , ω)|2

∏2g−2
l=1 |gl|1/6∏N
k=1 |fk|bk/6

,

where τg(X , ω) is given by (28); C(a) and δg are described in Remarks 3 and 6.
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