


Lecture Notes in Mathematics 2013

Editors:
J.-M. Morel, Cachan
B. Teissier, Paris





Alexander I. Bobenko · Christian Klein
Editors

Computational Approach
to Riemann Surfaces

ABC



Editors
Alexander I. Bobenko
Institut für Mathematik
Technische Universität Berlin
Strasse des 17. Juni 136
10623 Berlin
Germany
bobenko@math.tu-berlin.de

Christian Klein
Institut de
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Preface

Riemann surfaces appear in many branches of mathematics and physics, e.g.
in differential and algebraic geometry and the theory of moduli spaces, in
topological field theories, quantum chaos and integrable systems. The prac-
tical use of Riemann surface theory has been limited for a long time by the
absence of efficient computational approaches. In recent years considerable
progress has been achieved in the numerical treatment of Riemann surfaces
which stimulated further research in the subject and led to new applications.
The existing computational approaches follow from the various definitions of
Riemann surfaces: via non-singular algebraic curves, as quotients under the
action of Fuchsian or Schottky groups, or via polyhedral surfaces.

It is the purpose of the present volume to give a coherent presentation
of the existing or currently being developed computational approaches to
Riemann surfaces. The authors of the contributions are representants from
the groups providing publically available numerical codes in this field. Thus
this volume illustrates which software tools are available and how they can
be used in practice. In addition examples for solutions to partial differential
equations and in surface theory are presented.

In the introduction, A.I. Bobenko presents a comprehensive summary of
the theory of compact Riemann surfaces, Abelian differentials, periods on
Riemann surfaces, theta functions and uniformization theory. Riemann orig-
inally introduced Riemann surfaces as plane algebraic curves. B. Deconinck
and M. Patterson have followed this approach together with M. v. Hoeij for
a number of years. They have devised several algorithms facilitating differ-
ent aspects of the effective computation with Riemann surfaces represented
by plane algebraic curves. Their algorithms have led to the algcurves Maple
package: a collection of Maple programs for computations with algebraic
curves. B. Deconinck and M. Patterson describe their algorithms, the Maple
implementation and give instructive examples. The numerical approach via
algebraic curves involves the computation of contour integrals on Riemann
surfaces. To study the moduli spaces associated to Riemann surfaces numeri-
cally, an efficient computation of these integrals is necessary. J. Frauendiener
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and C. Klein present a fully numerical approach based on Gauss integration
which provides high accuracy. Explicit solutions of integrable partial differen-
tial equations are discussed as applications.

A complementary approach to compact Riemann surfaces is based on the
uniformization theory. M. Schmies discusses numerics of the Schottky uni-
formization of Riemann surfaces and in particular the convergence of Poincaré
theta series and their use in the numerical treatment of Riemann surfaces. It is
incorporated in the Java project jtem. The use of this package is demonstrated
for concrete examples from surface theory. R. Hidalgo and M. Seppälä discuss
the uniformization of hyperelliptic algebraic curves. Using a method originally
due to Myrberg, they construct an algorithm that approximates the genera-
tors of a Schottky group uniformizing a given hyperelliptic algebraic curve.
D. Crowdy and J. Marshall study conformal mappings for multiply connected
domains both analytically and numerically. They discuss a formulae for these
mappings in terms of the Schottky–Klein prime function. The latter function
is numerically evaluated by using Schottky uniformization.

The relation of Riemann surfaces to polyhedral surfaces offers yet another
computational approach. A.I. Bobenko, C. Mercat and M. Schmies discuss
the computation of period matrices of Euclidean surfaces by methods of dis-
crete differential geometry. The latter are based on the notions of discrete
holomorphicity and discrete Riemann surfaces. As an application period ma-
trices of Lawson surfaces are computed. An interesting object associated to
the modular space of Riemann surfaces are determinants of Laplacians. These
determinants appear in particular in topological field theories. A. Kokotov
presents a review of determinants of Laplacians for surfaces with polyhedral
metrics. These determinants are given in terms of explicit functions, and pro-
vide a way to study global aspects of the geometry of the associated modular
space numerically, an investigation which is currently being performed.

The intended audience of this book is twofold. It can be used as a text-
book for a graduate course in numerics of Riemann surfaces. The standard
undergraduate background, i.e., calculus and linear algebra, is required.
In particular, no knowledge of the theory of Riemann surfaces is expected, the
necessary background in this theory is contained in the Introduction chapter.

On the other hand, this book is also written for specialists in geometry
and mathematical physics applying the theory of Riemann surfaces in their
research. It is the first book on numerics of Riemann surfaces which reflects the
progress in this field during the last decade, and it contains original results.
There is a growing number of applications where one is interested in the
evaluation of concrete characteristics of models analytically described in terms
of Riemann surfaces. Many problem settings and computations in this volume
are motivated by such concrete applications in geometry and mathematical
physics.

This work was supported in part by the MISGAM program of the Euro-
pean Science Foundation. A.I. Bobenko is partially supported by the DFG Re-
search Unit ‘Polyhedral Surfaces’. C. Klein thanks for support by the project
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FroM-PDE funded by the European Research Council through the Advanced
Investigator Grant Scheme, the Conseil Régional de Bourgogne via a FABER
grant and the ANR via the program ANR-09-BLAN-0117-01.

Berlin, Dijon Alexander I. Bobenko
June, 2010 Christian Klein
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Introduction to Compact Riemann Surfaces

Alexander I. Bobenko

Institut für Mathematik,
Technische Universität Berlin,
Strasse des 17. Juni 136, 10623 Berlin, Germany,
bobenko@math.tu-berlin.de

The theory of Riemann surfaces is a classical field of mathematics where
geometry and analysis play equally important roles. The purpose of these
notes is to present some basic facts of this theory to make this book more self
contained. In particular we will deal with classical descriptions of Riemann
surfaces, Abelian differentials, periods on Riemann surfaces, meromorphic
functions, theta functions, and uniformization techniques.

Motivated by the concrete point of view on Riemann surfaces of this book
we choose essentially an analytic presentation. Concrete analytic tools and
constructions available on Riemann surfaces and their applications to the
theory are explained in detail. Most of them are proven or accompanied with
sketches of proofs. For the same reason, difficult non-constructive proofs of
some classical existence results in the theory of Riemann surfaces (such as the
existence of conformal coordinates, of holomorphic and Abelian differentials,
of meromorphic sections of holomorphic line bundles) are omitted. The lan-
guage of the geometric approach is explained in the section on holomorphic
line bundles.

This chapter is based on the notes of a graduate course given at the Tech-
nische Universität Berlin. There exists a huge literature on Riemann surfaces
including many excellent classical monographs. Our list [FK92, Jos06, Bos,
Bea78,AS60,Gu66,Lew64,Spr81] for further reading is by no means complete.

1.1 Definition of a Riemann Surface and Basic Examples

Let R be a two-dimensional real manifold, and let {Uα}α∈A be an open cover
of R, i.e., ∪α∈AUα = R. A local parameter (local coordinate, coordinate chart)
is a pair (Uα, zα) of Uα with a homeomorphism zα : Uα → Vα to an open subset
Vα ⊂ C. Two coordinate charts (Uα, zα) and (Uβ , zβ) are called compatible if
the mapping

fβ,α = zβ ◦ z−1
α : zα(Uα ∩ Uβ)→ zβ(Uα ∩ Uβ) , (1.1)

A.I. Bobenko and C. Klein (eds.), Computational Approach to Riemann Surfaces, 3
Lecture Notes in Mathematics 2013, DOI 10.1007/978-3-642-17413-1 1,
c© Springer-Verlag Berlin Heidelberg 2011



4 A.I. Bobenko

which is called a transition function is holomorphic. The local parameter
(Uα, zα) will be often identified with the mapping za if its domain is clear
or irrelevant.

If all the local parameters {Uα, zα}α∈A are compatible, they form a com-
plex atlas A of R. Two complex atlases A = {Uα, zα} and Ã = {Ũβ, z̃β} are
compatible if A∪Ã is a complex atlas. An equivalence class Σ of complex at-
lases is called a complex structure. It can be identified with a maximal atlasA∗,
which consists of all coordinate charts, compatible with an atlas A ⊂ Σ.

Definition 1. A Riemann surface is a connected one-dimensional complex
analytic manifold, that is, a connected two-dimensional real manifold R with
a complex structure Σ on it.

When it is clear which complex structure is considered, we use the notation
R for the Riemann surface.

If {U, z} is a coordinate on R then for every open set V ⊂ U and every
function f : C→ C, which is holomorphic and bijective on z(V ), {V, f ◦ z} is
also a local parameter on R.

The coordinate charts establish homeomorphisms of domains in R with
domains in C. This means that locally the Riemann surface is just a domain
in C. But for any point P ∈ R there are many possible choices of these
homeomorphisms. Therefore one can associate to R only the notions from the
theory of analytic functions in C that are invariant with respect to biholo-
morphic maps, i.e. those that one can define without choosing a specific local
parameter. For example, one can talk about the angle between two smooth
curves γ and γ̃ on R intersecting at some point P ∈ R. This angle is equal
to the one between the curves z(γ) and z(γ̃) that lie in C and intersect at the
point z(P ), where z is some local parameter at P . This definition is invariant
with respect to the choice of z.

If (R, Σ) is a Riemann surface, then the manifold R is oriented.
The simplest examples of Riemann surfaces are any domain (connected

open subset) U ⊂ C in the complex plane, the whole complex plane C, and the
extended complex plane (or Riemann sphere) Ĉ = CIP1 = C∪{∞}. The com-
plex structures on U and C are defined by single coordinate charts (U, id) and
(C, id). The extended complex plane is the simplest compact Riemann surface.
To define the complex structure on it we use two charts (U1, z2), (U2, z2) with

U1 = C , z1 = z ,

U2 = (C\{0}) ∪ {∞} , z2 = 1/z .

The transition functions

f1,2 = z1 ◦ z−1
2 , f2,1 = z2 ◦ z−1

1 : C\{0} → C\{0}

are holomorphic
f1,2(z) = f2,1(z) = 1/z .
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To a large extent the beauty of the theory of Riemann surfaces is due to
the fact that Riemann surfaces can be described in many completely different
ways. Interrelations between these descriptions make up an essential part of
the theory. The basic examples of Riemann surfaces we are going to discuss
now are exactly these foundations the whole theory is based on.

1.1.1 Non-Singular Algebraic Curves

Definition 2. An algebraic curve C is a subset in C2

C = {(μ, λ) ∈ C2 | P(μ, λ) = 0} , (1.2)

where P is an irreducible polynomial in λ and μ

P(μ, λ) =
N∑

i=0

M∑

j=0

pijμ
iλj .

The curve C is called non-singular if

gradCP|P=0 =
(
∂P
∂μ

,
∂P
∂λ

)

|P(μ,λ)=0

(1.3)

is nowhere zero on C.

The complex structure on C is defined as follows: the variable λ is taken
as local parameter in the neighborhoods of the points where ∂P/∂μ 	= 0, and
the variable μ is taken as local parameter near the points where ∂P/∂λ 	= 0.
The holomorphic compatibility of the introduced local parameters results from
the complex version of the implicit function theorem.

The Riemann surface C can be made a compact Riemann surface

Ĉ = C ∪ {∞(1)} ∪ . . . ∪ {∞N}

by adjoining points ∞(1), . . . ,∞(N) at infinity (λ → ∞, μ → ∞), and intro-
ducing admissible local parameters at these points, see Fig. 1.1.

Definition 3. Let R be a Riemann surface such that there exists an open
subset

U∞ = U (1)
∞ ∪ . . . ∪ U (N)

∞ ⊂ R

such that R\U∞ is compact and U
(n)
∞ are homeomorphic to punctured discs

zn : U (n)
∞ → D\{0} = {z ∈ C | 0 < |z| < 1} ,

where the homeomorphisms zn are holomorphically compatible with the com-
plex structure of R. Then R is called a compact Riemann surface with
punctures.
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z1

∞(2)

∞(1)

z2

Fig. 1.1. A compact Riemann surface with punctures

Let us extend the homeomorphisms zn

zn : Û (n)
∞ = U (n)

∞ ∪ {∞(n)} → D = {z | |z| < 1} , (1.4)

by setting zn(∞(n)) = 0, n = 1, . . . , N . A complex atlas for a new Riemann
surface

R̂ = R∪ {∞(1)} ∪ . . . ∪ {∞(N)}

is defined as a union of a complex atlas A of R with the coordinate charts
(1.4) compatible with A due to Definition 3. The Riemann surface R̂ is called
the compactification of the punctured Riemann surface R.

Hyperelliptic Curves

Let us consider the important special case of hyperelliptic curves

μ2 =
N∏

j=1

(λ− λj) , N ≥ 3 , λj ∈ C . (1.5)

When N = 3 or 4 the curve (1.5) is called elliptic. The curve is non-singular
if all the points λj are different

λj 	= λi , i, j = 1, . . . , N .

In this case the choice of local parameters can be additionally specified.
Namely, in the neighborhood of the points (μ0, λ0) with λ0 	= λj ∀j, the
local parameter is the homeomorphism

(μ, λ)→ λ . (1.6)

In the neighborhood of each point (0, λj) it is defined by the homeomorphism

(μ, λ)→
√

λ− λj . (1.7)
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For odd N = 2g + 1, the curve (1.5) has one puncture ∞

P →∞⇐⇒ λ→∞ ,

and a local parameter in its neighborhood is given by the homeomorphism

z∞ : (μ, λ)→ 1√
λ

. (1.8)

For even N = 2g + 2 there are two punctures ∞± distinguished by the
condition

P →∞± ⇐⇒ μ

λg+1
→ ±1 , λ→∞ ,

and the local parameters in the neighborhood of both points are given by the
homeomorphism

z∞± : (μ, λ)→ λ−1 . (1.9)

Theorem 1. The local parameters (1.6, 1.7, 1.8, 1.9) describe a compact
Riemann surface

Ĉ = C ∪ {∞} if N is odd ,

Ĉ = C ∪ {∞±} if N is even ,

of the hyperelliptic curve (1.5).

One prefers to consider compact Riemann surfaces and thus the compact-
ification Ĉ is called the Riemann surface of the curve C.

It turns out that all compact Riemann surfaces can be described as com-
pactifications of algebraic curves (see for example [Jos06]).

1.1.2 Quotients Under Group Actions

Definition 4. Let Δ be a domain in C. A group G : Δ → Δ of holomorphic
transformations acts discontinuously on Δ if for any P ∈ Δ there exists a
neighborhood V � P such that

gV ∩ V = ∅ , ∀g ∈ G , g 	= I . (1.10)

The quotient space Δ/G is defined by the equivalence relation

P ∼ P ′ ⇔ ∃g ∈ G : P ′ = gP .

By the natural projection π : Δ→ Δ/G every point is mapped to its equiva-
lence class. Every point P ∈ Δ has a neighborhood V satisfying (1.10). Then
U = π(V ) is open and π|V : V → U is a homeomorphism. Its inversion
z : U → V ⊂ Δ ⊂ C is a local parameter. One can cover Δ/G by domains of
this type. The transition functions are the corresponding group elements g;
therefore they are holomorphic.

Theorem 2. Δ/G is a Riemann surface.
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Tori

Let us consider the case Δ = C and the group G generated by two translations

z → z + w , z → z + w′ ,

where w,w′ ∈ C are two non-parallel vectors, Im w′/w 	= 0, see Fig. 1.2. The
group G is commutative and consists of the elements

gn,m(z) = z + nw + mw′ , n,m ∈ ZZ . (1.11)

The factor C/G has a nice geometrical realization as the parallelogram

T = {z ∈ C | z = aw + bw′, a, b ∈ [0, 1)} .

There are no G-equivalent points in T and on the other hand every point in
C is equivalent to some point in T . Since the edges of the parallelogram T are
G-equivalent z ∼ z + w, z ∼ z + w′, R is a compact Riemann surface, which
is topologically a torus. We discuss this case in more detail in Sect. 1.5.5.

w0

w w + w

Fig. 1.2. A complex torus

The uniformization theorem (see for example [Jos06]) claims that all com-
pact Riemann surfaces can be obtained as quotients Δ/G.

1.1.3 Polyhedral Surfaces as Riemann Surfaces

One can build a Riemann surface gluing together pieces of the complex
plane C.

Consider a finite set of disjoint polygons Fi and identify isometrically
pairs of edges in such a way that the result is a compact oriented polyhe-
dral surface P . A polyhedron in 3-dimensional Euclidean space is an example
of such a surface.

Theorem 3. The polyhedral surface P is a Riemann surface.
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θ2

θ1

θn

Fig. 1.3. Three kinds of points on a polyhedral surface

In order to define a complex structure on a polyhedral surface let us
distinguish three kinds of points (see Fig. 1.3):

1. Inner points of triangles
2. Inner points of edges
3. Vertices
One can map isometrically the corresponding polygon Fi (or pairs of neigh-

boring polygons) into C. This provides local parameters at the points of the
first and the second kind. Let P be a vertex and Fi, . . . , Fn the sequence of
successive polygons with this vertex (see the point (iii) above). Denote by θi
the angle of Fi at P . Then define

γ =
2π∑n
i=1 θi

.

Consider a suitably small ball neighborhood of P, which is the union U r =
∪iF r

i , where F r
i = {Q ∈ Fi | | Q − P |< r}. Each F r

i is a sector with
angle θi at P . We map it as above into C with P mapped to the origin
and then apply z �→ zγ , which produces a sector with the angle γθi. The
mappings corresponding to different polygons Fi can be adjusted to provide
a homeomorphism of U r onto a disc in C. All transition functions of the
constructed charts are holomorphic since they are compositions of maps of
the form z �→ az + b and z �→ zγ (away from the origin).

It turns out that any compact Riemann surface can be recovered from
some polyhedral surface [Bos].

1.1.4 Complex Structure Generated by the Metric

There is a smooth version of the previous construction. Let (R, g) be a two-real
dimensional orientable differential manifold with Riemannian metric g.

Definition 5. Two metrics g and g̃ are called conformally equivalent if they
differ by a function on R

g ∼ g̃ ⇔ g = f g̃ , f : R → IR+ . (1.12)

The transformation (1.12) preserves angles. This relation defines classes of
conformally equivalent metrics.
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Let (x, y) : U ⊂ R → R
2 be a local coordinate. In terms of the complex

variable z = x + iy the metric can be written as

g = Adz2 + 2Bdzdz̄ + Ādz̄2, A ∈ C, B ∈ IR, B > |A| . (1.13)

Note that the complex coordinate z is not compatible with the complex struc-
ture we will define on R with the help of g.

Definition 6. A coordinate w : U → C is called conformal if the metric in
this coordinate is of the form

g = eφdw, dw̄ , (1.14)

i.e., it is conformally equivalent to the standard metric dwdw̄ of IR2 = C.

If F : U ⊂ IR2 → IR3 is an immersed surface in IR3 then the first fundamen-
tal form < dF, dF > induces a metric on U . When the standard coordinate
(x, y) of IR2 ⊃ U is conformal, the parameter lines

F (x,Δm) , F (Δn, y) , x, y ∈ IR , n,m ∈ ZZ , Δ→ 0

comprise an infinitesimal square net on the surface.
It is easy to show that every compact Riemann surface admits a conformal

Riemannian metric. Indeed, each point P ∈ R possesses a local parameter
zP : UP → DP ⊂ C, where DP is a small open disc. Since R is compact there
exists a finite covering ∪ni=1UPi = R. For each i choose a smooth function
mi : DPi → IR with

mi > 0 on Di , mi = 0 on C \Di .

mi(zPi)dzPidz̄Pi is a conformal metric on UPi . The sum of these metrics over
i = 1, . . . , n yields a conformal metric on R.

Moreover, any metric can be brought to conformal form (1.14) due to the
following fundamental theorem.

Theorem 4. Conformal equivalence classes of metrics on an orientable
two-manifold R are in one to one correspondence with the complex structures
on R.

Let us show how one finds conformal coordinates. The metric (1.13) can
be written as follows (we suppose A 	= 0 )

g = s(dz + μdz̄)(dz̄ + μ̄dz) , s > 0 , (1.15)

where

μ =
Ā

2B
(1 + |μ|2) , s =

2B
1 + |μ|2 .
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Here |μ| is a solution of the quadratic equation

|μ|+ 1
|μ| =

2B
|A| ,

which can be chosen |μ| < 1. Comparing (1.15) and (1.14) we get

dw = λ(dz + μdz̄)

or
dw = λ(dz̄ + μ̄dz).

In the first case the map w(z, z̄) satisfies the equation

wz̄ = μwz (1.16)

and preserves the orientation w : C ⊃ U → V ⊂ C since |μ| < 1. In the second
case w : U → V inverses the orientation.

Equation (1.16) is called the Beltrami equation and μ(z, z̄) is called the
Beltrami coefficient.

By analytic methods (see for example [Spi79]) one can prove that for any
Beltrami coefficient μ there exists a local solution to the Beltrami equation in
the corresponding functional class. This allows us to introduce local conformal
coordinates.

Proposition 1. Let R be a two-dimensional orientable manifold with a metric
g and a positively oriented atlas ((xα, yα) : Uα → IR2)α∈A on R. Let (x, y) :
U ⊂ R → IR2 be one of these coordinate charts around a point P ∈ U ,
let z = x + iy and μ(z, z̄) be the Beltrami coefficient and let wβ(z, z̄) be a
solution to the Beltrami equation (1.16) in a neighborhood Vβ ⊂ V = z(U)
with P ∈ Uβ = z−1(Vβ). Then the coordinate wβ is conformal and the atlas
(wβ : Uβ → C)β∈B defines a complex structure on R.

Only the holomorphicity of the transition function may require a comment.
Let w : U → C, w̃ : Ũ → C be two local parameters with a non-empty
intersection U ∩ Ũ 	= ∅. Both coordinates are conformal

g = eφdw dw̄ = eφ̃dw̃ d ¯̃w,

which happens in one of the two cases

∂w̃

∂w̄
= 0 or

∂w̃

∂w
= 0 (1.17)

only. The transition function w̃(w) is holomorphic and not antiholomorphic
since the map w → w̃ preserves orientation.

Repeating these arguments one observes that conformally equivalent met-
rics generate the same complex structure, and Theorem 4 follows.
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1.2 Holomorphic Mappings

Definition 7. A mapping
f : M → N

between Riemann surfaces is called holomorphic if for every local parameter
(U, z) on M and every local parameter (V,w) on N with U ∩ f−1(V ) 	= ∅, the
mapping

w ◦ f ◦ z−1 : z(U ∩ f−1(V ))→ w(V )

is holomorphic.

A holomorphic mapping to C is called a holomorphic function, a holomor-
phic mapping to Ĉ is called a meromorphic function.

The following lemma characterizes the local behavior of holomorphic
mappings.

Lemma 1. Let f : M → N be a holomorphic mapping. Then for any a ∈ M
there exist k ∈ IN and local parameters (U, z), (V,w) such that a ∈ U, f(a) ∈ V
and F = w ◦ f ◦ z−1 : z(U)→ w(V ) equals

F (z) = zk. (1.18)

Corollary 1. Let f : M → N be a non-constant holomorphic mapping, then
f is open, i.e., the image of an open set is open.

If M is compact then f(M) is compact as a continuous image of a compact
set and open due to the previous claim. This implies that in this case the
corresponding non-constant holomorphic mapping is surjective and its image
N = f(M) compact.

We see that there exist no non-constant holomorphic mappings f : M → C,
which is the issue of the classical Liouville theorem.

Theorem 5. On a compact Riemann surface there exists no non-constant
holomorphic function.

Non-constant holomorphic mappings of Riemann surfaces f : M → N are
discrete: for any point P ∈ N the set SP = f−1(P ) is discrete, i.e. for any
point a ∈M there is a neighborhood V ⊂M intersecting with SP in at most
one point, |V ∩ SP | ≤ 1. Non-discreteness of S for a holomorphic mapping
would imply the existence of a limiting point in SP and finally f = const,
f : M → P ∈ N. Non-constant holomorphic mappings of Riemann surfaces
are also called holomorphic coverings.

Definition 8. Let f : M → N be a holomorphic covering. A point P ∈M is
called a branch point of f if it has no neighborhood V � P such that f

∣∣
V

is
injective. A covering without branch points is called unramified (ramified or
branched covering in the opposite case).
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Note that various definitions of a covering are used in the literature (see for
example [Jos06,Bea78]). In particular, often the term “covering” is used for
unramified coverings of our definition. Ramified coverings are important in
the theory of Riemann surfaces.

The number k ∈ IN in Lemma 1 can be described in topological terms.
There exist neighborhoods U � a, V � f(a) such that for any Q ∈ V \{f(a)}
the set f−1(Q) ∩ U consists of k points. One says that f has the multiplicity
k at a. Lemma 1 allows us to characterize the branch points of a holomorphic
covering f : M → N as the points with the multiplicity k > 1. Equivalently,
P is a branch point of the covering f : M → N if

∂(w ◦ f ◦ z−1)
∂z

∣∣∣∣
z(P )

= 0 , (1.19)

where z and w are local parameters at P and f(P ) respectively. Due to the
chain rule this condition is independent of the choice of the local parameters.
The number bf(P ) = k − 1 is called the branch number of f at P ∈ M. The
next lemma follows immediately from Lemma 1.

Lemma 2. Let f : M → N be a holomorphic covering. Then the set of branch
points

B = {P ∈M | bf (P ) > 0}
is discrete. If M is compact, then B is finite.

The projection A = f(B) of the set of branch points is also finite. The
number m of preimages for any point in N\A is the same since any two
points Q1, Q2 ∈ N\A can be connected by a curve l ⊂ N\A. Combined with
the topological characterization of the branch numbers this fact implies the
following theorem.

Theorem 6. Let f : M → N be a non-constant holomorphic mapping between
two compact Riemann surfaces. Then there is a number m ∈ IN such that f
takes every value Q ∈ N precisely m times, counting multiplicities. That is,
for all Q ∈ N ∑

P∈f−1(Q)

(bf (P ) + 1) = m . (1.20)

b = 2

b = 1
b = 1

N

f

M

Fig. 1.4. Covering
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Definition 9. The number m above is called the degree of f , and the covering
f : M → N is called m-sheeted.

Applying Theorem 6 to holomorphic mappings f : R→ Ĉ we get

Corollary 2. A non-constant meromorphic function on a compact Riemann
surface assumes every value m times, where m is the number of its poles
(counting multiplicities).

1.2.1 Algebraic Curves as Coverings

Let C be a non-singular algebraic curve (1.2) and Ĉ its compactification.
The map

(μ, λ)→ λ (1.21)

is a holomorphic covering Ĉ → Ĉ. If N is the degree of the polynomial P(μ, λ)
in μ

P(μ, λ) = μNpN (λ) + μN−1pN−1(λ) + . . . + p0(λ) ,

where all pi(λ) are polynomials, then λ : Ĉ → Ĉ is an N -sheeted covering, see
Fig. 1.4.

The points with ∂P/∂μ = 0 are the branch points of the covering λ :
C→C. At these points ∂P/∂λ 	= 0, and μ is a local parameter. The derivative
of λ with respect to the local parameter vanishes

∂λ

∂μ
= −∂P/∂μ

∂P/∂λ = 0 ,

which characterizes (1.19) the branch points of the covering (1.21). In the
same way the map (μ, λ) �→ μ is a holomorphic covering of the μ-plane. The
branch points of this covering are the points with ∂P/∂λ = 0.

Hyperelliptic Curves

Before we consider the hyperelliptic case let us recall a conventional descrip-
tion of the Riemann surface of the function μ =

√
λ. One takes two copies

of the complex plane C with cuts [0,∞] and glues them together crosswise
along this cut (see Fig. 1.5). The image in Fig. 1.5 visualizes the points of the
curve

C = {(μ, λ) ∈ C2 | μ2 = λ} ,

and the point λ = 0 gives an idea of a branch point.
The compactification Ĉ of the hyperelliptic curve

C = {(μ, λ) ∈ C2 | μ2 =
N∏

i=1

(λ− λi)} (1.22)
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0

Fig. 1.5. Riemann surface of
√

λ

is a two sheeted covering of the extended complex plane λ : Ĉ → Ĉ. The
branch points of this covering are

(0, λi), i = 1, . . . , N and ∞ for N = 2g + 1 ,

(0, λi), i = 1, . . . , N for N = 2g + 2 ,

with the branch numbers bλ = 1 at these points. Only the branching at
λ = ∞ possibly needs some clarification. The local parameter at ∞ ∈ Ĉ is
1/λ, whereas the local parameter at the point ∞ ∈ Ĉ of the curve Ĉ with
N = 2g + 1 is 1/

√
λ due to (1.8). In these coordinates the covering mapping

reads as (compare with (1.18))

1
λ

=
(

1√
λ

)2

,

which shows that bλ(∞) = 1.
One can imagine the Riemann surface Ĉ with N = 2g+2 as two Riemann

spheres with the cuts

[λ1, λ2], [λ3, λ4], . . . , [λ2g+1, λ2g+2]

glued together crosswise along the cuts. Figure 1.6 presents a topological image
of this Riemann surface. The image in Fig. 1.7 shows the Riemann surface
“from above” or “the first” sheet on the covering λ : C → C.

Hyperelliptic curves possess a holomorphic involution

h : (μ, λ)→ (−μ, λ) , (1.23)

Ĉ Ĉ

Fig. 1.6. Topological image of a hyperelliptic surface
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λ6
λ1

λ2

λ5

λ4
λ3

Fig. 1.7. Hyperelliptic surface C as a two-sheeted cover. The parts of the curves
on C that lie on the second sheet are indicated by dotted lines

which interchanges the sheets of the covering λ : Ĉ → Ĉ. It is called the hyper-
elliptic involution. The branch points of the covering are the fixed points of h.

The cuts in Fig. 1.7 are conventional and belong to the image shown in
Fig. 1.7 and not to the hyperelliptic Riemann surface itself, which is deter-
mined by its branch points alone. In particular, the two images shown in
Fig. 1.8 correspond to the same Riemann surface and to the same covering
(μ, λ)→ λ.

Fig. 1.8. Two equivalent images of the same hyperelliptic Riemann surface

1.2.2 Symmetric Riemann Surfaces as Coverings

The construction of Sect. 1.1.2 can be also applied to Riemann surfaces.

Theorem 7. Let R be a (compact) Riemann surface and let G be a finite
group of holomorphic automorphisms1 of order |G|. Then R/G is a Riemann
surface with the complex structure determined by the condition that the canon-
ical projection

π : R → R/G

is holomorphic. This is an |G|-sheeted covering, ramified at the fixed points
of G.

1 This group is always finite if the genus ≥ 2.
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The canonical projection π defines an |G|-sheeted covering. Denote by

GP0 = {g ∈ G | gP0 = P0}

the stabilizer of P0. It is always possible to choose a neighborhood U of P0,
which is invariant with respect to all elements of GP0 and such that U ∩
gU = ∅ for all g ∈ G \ GP0 . Let us normalize the local parameter z on
U by z(P0) = 0. The local parameter w in π(U), which is |GP0 |-sheetedly
covered by U is defined as the product of the values of the local parameter z
at all equivalent points lying in U . In terms of the local parameter z all the
elements of the stabilizer are represented by the functions g̃ = z ◦ g ◦ z−1 :
z(U) → z(U), which vanish at z = 0. Since g̃(z) are also invertible they can
be represented as g̃(z)= zhg(z) with hg(0) 	= 0. Finally the w − z coordinate
charts representation of π

w ◦ π ◦ z−1 : z → z|GP0 |
∏

g∈GP0

hg(z)

shows that the branch number of P0 is |GP0 |.
The compact Riemann surface Ĉ of the hyperelliptic curve

μ2 =
2N∏

n=1

(λ2 − λ2
n) , λ2

i 	= λ2
j , λk 	= 0 (1.24)

has the following group of holomorphic automorphisms

h : (μ, λ)→ (−μ, λ)
i1 : (μ, λ)→ (μ,−λ)

i2 = hi1 : (μ, λ)→ (−μ,−λ) .

The hyperelliptic involution h interchanges the sheets of the covering λ :
Ĉ → Ĉ, therefore the factor Ĉ/h is the Riemann sphere. The covering

Ĉ → Ĉ/h = Ĉ

is ramified at all the points λ = ±λn.
The involution i1 has four fixed points on Ĉ: two points with λ = 0 and

two points with λ =∞. The covering

Ĉ → Ĉ1 = Ĉ/i1 (1.25)

is ramified at these points. The mapping (1.25) is given by

(μ, λ)→ (μ,Λ) , Λ = λ2 ,
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and Ĉ1 is the Riemann surface of the curve

μ2 =
2N∏

n=1

(Λ− λ2
n) .

The involution i2 has no fixed points. The covering

Ĉ → Ĉ2 = Ĉ/i2 (1.26)

is unramified. The mapping (1.26) is given by

(μ, λ)→ (M,Λ) , M = μλ, Λ = λ2 ,

and Ĉ2 is the Riemann surface of the curve

M2 = Λ

2N∏

n=1

(Λ− λ2
n) .

1.3 Topology of Riemann Surfaces

1.3.1 Spheres with Handles

We have seen in Sect. 1.1 that any Riemann surface is a two-dimensional ori-
entable real manifold. In this section we present basic facts about the topology
of these manifolds focusing on the compact case. We start with an intuitive
fundamental classification theorem.

Theorem 8. (and Definition) Every compact Riemann surface is homeo-
morphic to a sphere with handles (i.e., a topological manifold homeomorphic
to a sphere with handles in Euclidean 3-space). The number g ∈ IN of han-
dles is called the genus of R. Two manifolds with different genera are not
homeomorphic.

b2

b1

a2

a1

Fig. 1.9. A sphere with 2 handles

The genus of the compactification Ĉ of the hyperelliptic curve (1.22) with
N = 2g + 1 or N = 2g + 2 is equal to g.

For many purposes it is convenient to use planar images of spheres with
handles.
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Proposition 2. Let Πg be a sphere S2 ∼= IR2 ∪{∞} with 2g holes bounded by
the non-intersecting curves

γ1, γ
′
1, . . . , γg, γ

′
g . (1.27)

and identify the curves γi ≈ γ′
i, i = 1, . . . , g in such a way that the orientations

of these curves with respect to Πg are opposite (see Fig. 1.10). Then Πg is
homeomorphic to a sphere with g handles.

°1

°g °g

°1

Πg

Fig. 1.10. A planar image of a sphere with g handles

To check this claim one should cut up all the handles of a sphere with g
handles.

A normalized simply-connected image of a sphere with g handles is de-
scribed in the following proposition.

Proposition 3. Let Fg be a 4g-gon with the edges

a1, b1, a
′
1, b

′
1, . . . , ag, bg, a

′
g, b

′
g , (1.28)

listed in the order of traversing the boundary of Fg and the boundary curves

ai ≈ a′i, bi ≈ b′i, i = 1, . . . , g

are identified in such a way that the orientations of the edges ai and a′i as
well as bi and b′i with respect to Fg are opposite (see Fig. 1.11). Then Fg is
homeomorphic to a sphere with g handles. The sphere without handles (g = 0)
is homeomorphic to a 2-gon with the edges identified.

This claim is visualized in Figs. 1.12 and 1.13. One choice of closed curves
a1, b1, . . . , ag, bg on a sphere with handles is shown in Fig. 1.9.

Let us consider a triangulation T of R, i.e., a set {Ti} of topological trian-
gles, which are glued along their edges (the identification of vertices or edges
of individual triangles is not excluded), and which comprise R. More gener-
ally, one can consider cell decompositions of R into topological polygons {Ti}.
Obviously, compact Riemann surfaces possess finite triangulations.
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b1

b1

bg

a1

a1

ag

ag

Fg
bg

Fig. 1.11. Simply-connected image of a sphere with g handles

a

b

b

a

a

b
a

b

b

Fig. 1.12. Gluing a torus

a

l
b

a
b

l

a

a

b alb

b

a

b

Fig. 1.13. Gluing a handle

Definition 10. Let T be a triangulation of a compact two-real dimensional
manifold R and F be the number of triangles, E the number of edges, V the
number of vertices of T . The number

χ = F − E + V (1.29)

is called the Euler characteristic of R.

Proposition 4. The Euler characteristic χ(R) of a compact Riemann surface
R is independent of the triangulation of R.

A differential geometric proof of this fact is based on the Gauss–Bonnet
theorem (see for example [Spi79]). Introduce a conformal metric eu dz dz̄ on
a Riemann surface (see Sect. 1.1.4). The Gauss–Bonnet theorem provides us
with the following formula for the Euler characteristic

χ(R) =
1
2π

∫

R
K , (1.30)
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where
K = −2uzz̄e−u

is the curvature of the metric. The right hand side in (1.30) is independent of
the triangulation, the left hand side is independent of the metric we introduced
on R. This proves that the Euler characteristic is a topological invariant of R.

A triangulation of the simply-connected model Fg of Proposition 3 gives
a formula for χ in terms of the genus.

Corollary 3. The Euler characteristic χ(R) of a compact Riemann surface
R of genus g is equal to

χ(R) = 2− 2g . (1.31)

Theorem 9 (Riemann–Hurwitz). Let f : R̂ → R be an N -sheeted cover-
ing of the compact Riemann surface R of genus g. Then the genus ĝ of R̂ is
equal to

ĝ = N(g − 1) + 1 +
b

2
, (1.32)

where
b =

∑

P∈R̂
bf (P ) (1.33)

is the total branching number.

This formula is equivalent to the corresponding identity for the Euler char-
acteristic

χ(R̂) = Nχ(R)− b .

The latter follows easily if one chooses a triangulation of R so that the set of
its vertices contains the projection to R of all branch points of the covering.

1.3.2 Fundamental Group

Let γ be a closed curve with initial and terminal point P , i.e., a continuous
map γ : [0, 1]→R with γ(0) = γ(1) = P .

Definition 11. Two closed curves γ1, γ2 on R with the initial and terminal
point P are called homotopic if one can be continuously deformed to the an-
other, i.e., if there exists a continuous map γ : [0, 1] × [0, 1] → R such that
γ(t, 0) = γ1(t), γ(t, 1) = γ2(t), γ(0, λ) = γ(1, λ) = P . The set of homotopic
curves forms a homotopy class, which we denote by Γ = [γ].

There is a natural composition of such curves:

γ1 · γ2(t) =
{

γ1(2t) 0 ≤ t ≤ 1
2

γ2(2t− 1) 1
2 ≤ t ≤ 1 ,
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which is well-defined also for the corresponding homotopic classes

Γ1 · Γ2 = [γ1 · γ2] .

The set of homotopy classes of curves forms a group π1(R, P ) with the mul-
tiplication defined above. The curves that can be contracted to a point corre-
spond to the identity element of the group. It is easy to see that the groups
π1(R, P ) and π1(R, Q) based at different points are isomorphic as groups,
and one can omit the second argument in the notation. The elements of this
group are freely homotopic closed curves (i.e. cycles without reference to the
base point P ).

Definition 12. The group π1(R) is called the fundamental group of R.

Examples
1. Sphere with N holes

D1

°2
D2DN

°N

°1

Fig. 1.14. Fundamental group of a sphere with N holes

The fundamental group is generated by the homotopy classes of the closed
curves γ1, . . . , γN each going around one of the holes (Fig. 1.14). The curve
γ1γ2 . . . γN can be contracted to a point, which implies the relation

Γ1Γ2 . . . ΓN = 1 (1.34)

in π1(S2 \ {
⋃N
n=1 Dn}).

2. Compact Riemann surface of genus g
It is convenient to consider the 4g-gon model Fg (Fig. 1.15). The curves

a1, b1, . . . , ag, bg are closed on R. Their homotopy classes, which we denote by
A1, B1, . . . , Ag, Bg generate π1(R). The contractible boundary of Fg implies
the only relation in the fundamental group:

A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g = 1 . (1.35)
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a1

b1

a−1
1

b−1
1

ag

bg

b−1
g

a−1
g

Fig. 1.15. Fundamental group of a compact surface of genus g

1.3.3 First Homology Group

Formal sums of points
∑

niPi, oriented curves γi,

γ =
∑

niγi ∈ C1

and oriented domains Di,

D =
∑

niDi ∈ C2

with integer coefficients ni ∈ ZZ form abelian groups C0, C1 and C2 respec-
tively. The elements of these groups are called 0-chains , 1-chains and 2-chains,
respectively.

The boundary operator ∂ maps the corresponding elements to their
oriented boundaries, defining the group homomorphisms ∂ :C1 → C0, ∂ :
C2 → C1.

C1 contains two important subgroups, of cycles and of boundaries. A closed
oriented curve γ is called a cycle (i.e. ∂γ = 0), and γ = ∂D is called a boundary.
We denote these subgroups by

Z = {γ ∈ C1 | ∂γ = 0} , B = ∂C2 .

Because ∂2 = 0, every boundary is a cycle and we have B ⊂ Z ⊂ C1. Two
elements of C1 are called homologous if their difference is a boundary:

γ1 ∼ γ2, γ1, γ2 ∈ C1 ⇔ γ1 − γ2 ∈ B, i.e. ∃D ∈ C2 : δD = γ1 − γ2 .

Definition 13. The factor group

H1(R,ZZ) = Z/B

is called the first homology group of R.

Freely homotopic closed curves are homologous. However, the converse is
false in general, as one can see from the example in Fig. 1.16.
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Fig. 1.16. A cycle homologous to zero but not homotopic to a point

The first homology group is the fundamental group “made commutative”.
More precisely

H1(R,ZZ) =
π(R)

[π(R), π(R)]
,

where the denominator is the commutator subgroup, i.e., the subgroup of
π(R) generated by all elements of the form ABA−1B−1, A,B ∈ π(R).

To introduce intersection numbers of elements of the first homology
group it is convenient to represent them by smooth cycles. Every element of
H1(R,ZZ) can be represented by a C∞-cycle without self-intersections. More-
over, given two elements of H1(R,ZZ) one can represent them by smooth cycles
intersecting transversally in a finite number of points.

Let γ1 and γ2 be two curves intersecting transversally at the point P . One
associates to this point a number (γ1◦γ2)P = ±1, where the sign is determined
by the orientation of the basis γ′

1(P ), γ′
2(P ) as it is shown in Fig. 1.17.

°1 °2

°2 °1

(°1 ◦ °2)P = 1

P P

(°1 ◦ °2)P = −1

Fig. 1.17. Intersection number at a point

Definition 14. Let γ1, γ2 be two smooth cycles intersecting transversally in
finitely many points. The intersection number of γ1 and γ2 is defined by

γ1 ◦ γ2 =
∑

P∈γ1∩γ2
(γ1 ◦ γ2)P . (1.36)

Lemma 3. The intersection number of any boundary with any cycle vanishes.

Since (1.36) is bilinear it is enough to check the statement for a boundary
of a domain β = δD and a simple cycle γ. This follows from the fact that the
cycle γ enters D as many times as it leaves D (see Fig. 1.18).
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D

±D

°

Fig. 1.18. γ ◦ δD = 0

To define the intersection number for homology classes represent γ, γ′ ∈
H1(R,ZZ) by C∞-cycles

γ =
∑

i

niγi, γ′ =
∑

j

mjγ
′
j ,

where γi, γ
′
j are smooth curves intersecting transversally. Define γ ◦ γ′ =∑

ij nimjγi ◦ γ′
j . Due to Lemma 3 the intersection number is well defined

for homology classes.

Theorem 10. The intersection number is a bilinear skew-symmetric map

◦ : H1(R,ZZ)×H1(R,ZZ)→ ZZ .

Examples

1. The homology group of a sphere with N holes
The homology group is generated by the loops γ1, . . . , γN−1 (see Fig. 1.14).

For the homology class of the loop γN one has

γN = −
N−1∑

i=1

γi ,

since
∑N

i=1 γi is a boundary.

2. Homology group of a compact Riemann surface of genus g
Since the homotopy group is generated by the cycles a1, b1, . . . , ag, bg

shown in Fig. 1.15 this is also true for the homology group. The intersection
numbers of these cycles are as follows:

ai ◦ bj = δij , ai ◦ aj = bi ◦ bj = 0 . (1.37)

The cycles a1, b1, . . . , ag, bg constitute a basis of the homology group. Their
intersection numbers imply the linear independence.

Definition 15. A homology basis a1, b1, . . . , ag, bg of a compact Riemann sur-
face of genus g with the intersection numbers (1.37) is called canonical basis
of cycles.
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A canonical basis of cycles is by no means unique. Let (a, b) be a canonical
basis of cycles. We represent it by a 2g-dimensional vector

(
a
b

)
, a =

⎛

⎜⎝
a1

...
ag

⎞

⎟⎠ , b =

⎛

⎜⎝
b1
...
bg

⎞

⎟⎠ .

Any other basis (ã, b̃) of H1(R,ZZ) is then given by the transformation
(
ã

b̃

)
= A

(
a
b

)
, A ∈ GL(2g,ZZ) . (1.38)

Substituting the right hand side of (1.38) in

J =
(
ã

b̃

)
◦ (ã, b̃) , J =

(
0 I
−I 0

)

we obtain that the basis (ã, b̃) is canonical if and only if A is symplectic,
A ∈ Sp(g,ZZ), i.e.,

J = AJAT . (1.39)

Two examples of canonical cycle bases are presented in Figs. 1.19 and 1.20.
The curves bi in Fig. 1.19 connect identified points of the boundary curves and
are therefore closed. In Fig. 1.20 the parts of the cycles lying on the “lower”
sheet of the covering are marked by dotted lines.

b1a1

ag

bg

Πg

Fig. 1.19. A canonical cycle basis for the planar model Πg of a compact Riemann
surface

1.4 Abelian Differentials

Differentials on a Riemann surface are much easier to handle than functions,
and they are the basic tool to investigate and construct functions.
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λ2g λ2g+2λ2 λ4 λ2g−1 λ2g+1λ1 λ3

b1

b2 bg

a2a1 ag

Fig. 1.20. A canonical cycle basis of a hyperelliptic Riemann surface

1.4.1 Differential Forms and Integration Formulas

If smooth complex valued functions f(z, z̄), p(z, z̄), q(z, z̄), s(z, z̄) are as-
signed to each local coordinate on R such that

f = f(z, z̄) ,
ω = p(z, z̄)dz + q(z, z̄)dz̄ , (1.40)
S = s(z, z̄)dz ∧ dz̄

are invariant under coordinate changes (1.1), one says that the function
(0-form) f , the differential (1-form) ω and the 2-form S are defined on R.

The 1-form ω is called a form of type (1,0) (resp. a form of type (0,1)) if
it may locally be written ω = p dz (resp. ω = q dz̄). The space of differentials
is obviously a direct sum of the subspaces of (1,0) and (0,1) forms.

The exterior product of two 1-forms ω1 and ω2 is the 2-form

ω1 ∧ ω2 = (p1q2 − p2q1)dz ∧ dz̄ .

The differential operator d, which transforms k-forms into (k+1)-forms is
defined by

df = fzdz + fz̄dz̄ ,

dω = (qz − pz̄)dz ∧ dz̄ , (1.41)
dS = 0 .

Definition 16. A differential df is called exact. A differential ω with dω = 0
is called closed.

Using (1.41), one can also easily check that

d2 = 0
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whenever d2 is defined and

d(fω) = df ∧ ω + fdω (1.42)

for any function f and 1-form ω. This implies in particular that any exact
form is closed.

One can integrate differentials over 1-chains (i.e., smooth oriented curves
and their formal sums),

∫
γ

ω, and 2-forms over 2-chains (formal sums of ori-

ented domains):
∫

D

S.

The most important integration formula is

Theorem 11 (Stokes’s theorem). Let D be a 2-chain with a piecewise
smooth boundary ∂D. Then Stokes’s formula

∫

D

dω =
∫

∂D

ω (1.43)

holds for any differential ω.

The difference of two homologic curves γ − γ̃ is a boundary for some D,
which implies

Corollary 4. A differential ω is closed, dω = 0, if and only if for any two
homological paths γ and γ̃ ∫

γ

ω =
∫

γ̃

ω

holds.

Corollary 5. Let ω be a closed differential, Fg be a simply connected model
of Riemann surface of genus g (see Sect. 1.3) and P0 be some point in Fg.
Then the function

f(P ) =

P∫

P0

ω , P ∈ Fg ,

where the integration path lies in Fg is well-defined on Fg.

Let γ1, . . . , γn be a homology basis ofR and ω a closed differential. Periods
of ω are defined by

Λi =
∫

γi

ω .

Any closed curve γ on R is homological to
∑

niγi with some ni ∈ ZZ, which
implies ∫

γ

ω =
∑

niΛi ,
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i.e., Λi generate the lattice of periods of ω. In particular, if R is a Riemann
surface of genus g with canonical homology basis a1, b1, . . . , ag, bg, we denote
the corresponding periods by

Ai =
∫

ai

ω , Bi =
∫

bi

ω .

Theorem 12 (Riemann’s bilinear relations). Let R be a Riemann sur-
face of genus g with a canonical basis ai, bi, i = 1, . . . , g and let ω and ω′

be two closed differentials on R with periods Ai, Bi, A
′
i, B

′
i, i = 1, . . . , g.

Then
∫

R
ω ∧ ω′ =

g∑

j=1

(AjB′
j −A′

jBj) . (1.44)

The Riemann surface R cut along all the cycles ai, bi, i = 1, . . . , g of the
fundamental group is the simply connected domain Fg with the boundary (see
Figs. 1.11 and 1.15)

∂Fg =
g∑

i=1

ai + a−1
i + bi + b−1

i . (1.45)

Stokes’s theorem with D = Fg implies

∫

R

ω ∧ ω′ =
∫

∂Fg

ω′(P )

P∫

P0

ω ,

where P0 is some point in Fg and the integration path [P0, P ] lies in Fg.
The curves aj and a−1

j of the boundary of Fg are identical on R but have
opposite orientation. For the points Pj and P ′

j lying on aj and a−1
j respectively

and coinciding on R we have (see Fig. 1.21)

ω′(Pj) = ω′(P ′
j) ,

Pj∫

P0

ω −
P ′
j∫

P0

ω =

Pj∫

P ′
j

ω = −Bj . (1.46)

In the same way for the points Qj ∈ bj and Q′
j ∈ b−1

j coinciding on R one gets

ω′(Qj) = ω′(Q′
j) ,

Qj∫

P0

ω −
Q′
j∫

P0

ω =

Qj∫

Q′
j

ω = Aj . (1.47)
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Substituting, we obtain

∫

∂Fg

ω′(P )

P∫

P0

ω =
g∑

j=1

(
−Bj

∫

aj

ω′ + Aj

∫

bj

ω′) =
g∑

j=1

(AjB′
j −A′

jBj) .

Finally, to complete the proof of Riemann’s bilinear identity, one checks di-
rectly that the right hand side of (1.44) is invariant under the transformation
(1.38, 1.39). Therefore the claim holds for an arbitrary canonical basis of
H1(R,C).

Qj

PjQj

Pj

b−1
j

a−1
j

aj

bj

Fig. 1.21. Illustrating the proof of the Riemann bilinear relation

1.4.2 Abelian Differentials of the First, Second and Third Kind

Definition 17. A differential ω on a Riemann surface R is called holomor-
phic (or an Abelian differential of the first kind) if in any local chart it is
represented as

ω = h(z)dz

where h(z) is holomorphic. The differential ω̄ is called anti-holomorphic.

Holomorphic and anti-holomorphic differentials are closed.
Holomorphic differentials form a complex vector space H1(R,C). It is

not difficult to show that the dimension of this space is at most g. Indeed,
Riemann’s bilinear identity with ω′ = ω̄ implies that the periods Aj , Bj of a
holomorphic differential ω satisfy

Im
g∑

j=1

AjB̄j < 0 . (1.48)

Thus, if all a-periods of the holomorphic differential ω are zero then ω ≡ 0. If
ω1, . . . , ωg+1 are holomorphic, then there exists a linear combination of them
with all zero a-periods, i.e., the differentials are linearly dependent.

Theorem 13. The dimension of the space of holomorphic differentials of a
compact Riemann surface is equal to its genus

dim H1(R,C) = g(R) .
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The existence part of this theorem is more difficult and can be proved
by analytic methods [FK92]. However, when the Riemann surface R is con-
cretely described, one can usually present a basis ω1, . . . , ωg of holomorphic
differentials explicitly.

On a hyperelliptic curve one can check the holomorphicity using the cor-
responding local coordinates described in Sect. 1.1.1.

Theorem 14. The differentials

ωj =
λj−1dλ

μ
, j = 1, . . . , g (1.49)

form a basis of holomorphic differentials of the hyperelliptic Riemann surface

μ2 =
N∏

i=1

(λ− λi) λi 	= λj , (1.50)

where N = 2g + 2 or N = 2g + 1.

Another example is the holomorphic differential

ω = dz

on the torus C/G of Sect. 1.3. Here z is the coordinate of C.
Since a differential with all zero a-periods vanishes identically, the matrix

of a-periods Aij =
∫
ai

ωj of any basis ωj , j = 1, . . . , g of H1(R,C) is invertible.

The basis can be normalized.

Definition 18. Let aj , bj , j = 1, . . . , g be a canonical basis of H1(R,ZZ). The
dual basis of holomorphic differentials ωk, k = 1, . . . , g, normalized by

∫

aj

ωk = 2πiδjk

is called canonical basis of differentials.

We consider also differentials with singularities.

Definition 19. A differential Ω is called meromorphic or Abelian differential
if in any local chart z : U → C it is of the form

Ω = g(z)dz ,

where g(z) is meromorphic. The integral
P∫

P0

Ω of a meromorphic differential

is called the Abelian integral.
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Let z be a local parameter at the point P, z(P ) = 0 and

Ω =
∞∑

k=N(P )

gkz
kdz , N ∈ ZZ (1.51)

be the representation of the differential Ω at P . The numbers N(P ) and g−1

do not depend on the choice of the local parameter and are characteristics of
Ω alone. N(P ) is called the order of the point P . If N(P ) is negative −N(P )
is called the order of the pole of Ω at P . The number g−1 is called the residue
of Ω at P . It can also be defined by

resPΩ ≡ g−1 =
1

2πi

∫

γ

Ω , (1.52)

where γ is a small closed simple loop going around P in the positive direction.
Let S be the set of singularities of Ω

S = {P ∈ R | N(P ) < 0} .

S is discrete, and if R is compact then S is also finite.
Computing the integral of an Abelian differential Ω along the boundary

of the simply connected model Fg by residues, one obtains
∑

Pj∈S
resPjΩ = 0 . (1.53)

Definition 20. A meromorphic differential with singularities is called an
Abelian differential of the second kind if the residues are equal to zero at all
singular points. A meromorphic differential with non-zero residues is called
an Abelian differential of the third kind.

The residue identity (1.53) motivates the following choice of basic mero-
morphic differentials. The differential of the second kind Ω

(N)
R has only one

singularity. It is at the point R ∈ R and is of the form

Ω
(N)
R =

(
1

zN+1
+ O(1)

)
dz , (1.54)

where z is a local parameter at R with z(R) = 0. The Abelian differential
Ω

(N)
R depends on the choice of the local parameter z. The Abelian differential

of the third kind ΩRQ has two singularities at the points R and Q with

resRΩRQ = −resQΩRQ = 1 ,

ΩRQ =
(

1
zR

+ O(1)
)

dzR near R ,

ΩRQ =
(
− 1
zQ

+ O(1)
)

dzQ near Q , (1.55)
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where zR and zQ are local parameters at R and Q with zR(R) = zQ(Q) = 0.
For the corresponding Abelian integrals this implies

P∫
Ω

(N)
R = − 1

NzN
+ O(1) P → R , (1.56)

P∫
ΩRQ = log zR + O(1) P → R ,

P∫
ΩRQ = − log zQ + O(1) P → Q . (1.57)

The Abelian integrals of the first and second kind are single-valued on Fg.
The Abelian integral of the third kind ΩRQ is single-valued on Fg \ [R,Q],
where [R,Q] is a cut from R to Q lying inside Fg.

One can add Abelian differentials of the first kind to Ω
(N)
R and ΩRQ pre-

serving the form of the singularities. By addition of a proper linear combina-
tion

∑g
i=1 αiωi the differential can be normalized as follows:

∫

aj

Ω
(N)
R = 0 ,

∫

aj

ΩRQ = 0 (1.58)

for all a-cycles j = 1, . . . , g.

Definition 21. The differentials Ω
(N)
R , ΩRQ with the singularities (1.54),

(1.55) and all zero a-periods (1.58) are called the normalized Abelian
differentials of the second and third kind.

Theorem 15. Given a compact Riemann surface R with a canonical basis
of cycles a1, b1, . . . , ag, bg, points R,Q ∈ R, a local parameter z at R, and
N ∈ IN, there exist unique normalized Abelian differentials Ω

(N)
R and ΩRQ of

the second and third kind, respectively.

The proof of the uniqueness is simple. The holomorphic difference of two
normalized differentials with the same singularities has all zero a-periods and
therefore vanishes identically. Like in the case of holomorphic differentials, the
existence can be shown by analytic methods [FK92].

Abelian differentials of the second and third kind can be normalized by
a more symmetric condition than (1.58). Namely, all the periods can be nor-
malized to be purely imaginary

Re
∫

γ

Ω = 0 , ∀γ ∈ H1(R,ZZ) .

Corollary 6. The normalized Abelian differentials form a basis in the space
of Abelian differentials on R.
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Again, as in the case of holomorphic differentials, we present the basis of
Abelian differentials of the second and third kind in the hyperelliptic case

μ2 =
M∏

k=1

(λ− λk) .

Denote the coordinates of the points R and Q by

R = (μR, λR) , Q = (μQ, λQ) .

We consider the case when both points R and Q are finite λR 	=∞, λQ 	=∞.
The case λR = ∞ or λQ = ∞ is reduced to the case we consider by a frac-
tional linear transformation. If R is not a branch point, then to get a proper
singularity we multiply dλ/μ by 1/(λ−λR)n and cancel the singularity at the
point πR = (−μR, λR).

The following differentials are of the third kind with the singularities (1.55)

Ω̂RQ =
(
μ + μR
λ− λR

− μ + μQ
λ− λQ

)
dλ

2μ
if μR 	= 0 , μQ 	= 0 ,

Ω̂RQ =
(

μ + μR
μ(λ− λR)

− 1
λ− λQ

)
dλ

2
if μR 	= 0 , μQ = 0 ,

Ω̂RQ =
(

1
λ− λR

− 1
λ− λQ

)
dλ

2
if μR = μQ = 0 .

If R is not a branch point, μR 	= 0, then the differentials

Ω̂
(N)
R =

μ + μ
[N ]
R

(λ− λR)N+1

dλ
2μ

,

where μ
[N ]
R is the Taylor series at R up to the term of order N ,

μ
[N ]
R = μR +

∂μ

∂λ

∣∣∣∣
R

(λ − λR) + . . . +
1
N !

∂Nμ

∂λN

∣∣∣∣
R

(λ− λR)N ,

have singularities at R of the form
(
z−N−1 + o(z−N−1)

)
dz (1.59)

where z = λ − λR. If R is a branch point, μR = 0, the following differentials
have the singularities (1.59) with z =

√
λ− λR

Ω̂
(N)
R =

dλ
2(λ− λR)nμ

√√√√√
N∏

i=1
i�=R

(λR − λi) for N = 2n− 1 ,

Ω̂
(N)
R =

dλ
2(λ− λR)n

for N = 2n− 2 .

Taking proper linear combinations of these differentials with different values
of N we obtain the singularity (1.54). The normalization (1.58) is obtained
by addition of holomorphic differentials (1.46)
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1.4.3 Periods of Abelian Differentials: Jacobi Variety

Definition 22. Let aj, bj , j = 1, . . . , g, be a canonical homology basis of R
and let ωk, k = 1, . . . , g, be the dual basis of H1(R,C). The matrix

Bij =
∫

bi

ωj (1.60)

is called the period matrix of R.

Theorem 16. The period matrix is symmetric and its real part is negative
definite,

Bij = Bji , (1.61)
Re(Bα,α) < 0 , ∀α ∈ IRg \ {0} . (1.62)

The symmetry of the period matrix follows from the Riemann bilinear identity
(1.44) with ω = ωi and ω′ = ωj. The definiteness (1.62) is another form
of (1.48).

The period matrix depends on the homology basis. Let us use the column
notations (

ã

b̃

)
=
(

A B
C D

)(
a

b

)
,

(
A B
C D

)
∈ Sp(g,ZZ) . (1.63)

Let ω = (ω1, . . . , ωg) be the canonical basis of holomorphic differentials
dual to (a, b). Labeling columns of the matrices by differentials and rows by
cycles we get

∫

ã

ω = 2πiA + BB,

∫

b̃

ω = 2πiC + DB.

The canonical basis of H1(R,C) dual to the basis (ã, b̃) is given by the right
multiplication

ω̃ = 2πiω(2πiA + BB)−1.

This implies the following transformation formula for the period matrix.

Lemma 4. The period matrices B and B̃ of the Riemann surface R corre-
sponding to the homology basis (a, b) and (ã, b̃) respectively are related by

B̃ = 2πi(DB + 2πiC)(BB + 2πiA)−1, (1.64)

where A,B,C,D are the coefficients of the symplectic matrix (1.63).

Using the Riemann bilinear identity one can express the periods of
the normalized Abelian differentials of the second and third kind in terms
of the normalized holomorphic differentials. Choosing ω = ωj and ω′ =
Ω

(N)
R or ω′ =ΩRQ in the Riemann bilinear identity we obtain the following

representations.
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Lemma 5. Let ωj , Ω
(N)
R , ΩRQ be the normalized Abelian differentials from

Definition 21. Let z be a local parameter at R with z(R) = 0 and

ωj =
∞∑

k=0

αk,jz
kdz (1.65)

the representation of the normalized holomorphic differentials at R. The pe-
riods of Ω(N)

R , ΩRQ are equal to:
∫

bj

Ω
(N)
R =

1
N

αN−1,j (1.66)

∫

bj

ΩRQ =

R∫

Q

ωj , (1.67)

where the integration path [R,Q] in (1.67) does not cross the cycles a, b.

Let Λ be the lattice

Λ = {2πiN + BM, N,M ∈ ZZg}

generated by the periods of R. It defines an equivalence relation in Cg : two
points of Cg are equivalent if they differ by an element of Λ.

Definition 23. The complex torus

Jac(R) = Cg/Λ

is called the Jacobi variety of R. The map

A : R→ Jac(R) , A(P ) =

P∫

P0

ω , (1.68)

where ω = (ω1, . . . , ωg) is the canonical basis of holomorphic differentials and
P0 ∈ R, is called the Abel map.

1.5 Meromorphic Functions on Compact
Riemann Surfaces

1.5.1 Divisors and the Abel Theorem

In order to analyze functions and differentials on Riemann surfaces, one char-
acterizes them in terms of their zeros and poles. It is convenient to consider
formal sums of points on R. (Later these points will become zeros and poles
of functions and differentials).
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Definition 24. A formal linear combination

D =
N∑

j=1

njPj , nj ∈ ZZ , Pj ∈ R (1.69)

is called a divisor on the Riemann surface R. The sum

deg D =
N∑

j=1

nj

is called the degree of D.

The set of all divisors with the obviously defined group operations

n1P + n2P = (n1 + n2)P , −D =
N∑

j=1

(−nj)Pj

forms an Abelian group Div(R). A divisor (1.69) with all nj ≥ 0 is called
positive (or integral, or effective). This notion allows us to define a partial
ordering in Div(R)

D ≤ D′ ⇐⇒ D′ −D ≥ 0 .

Definition 25. Let f be a meromorphic function on R and let P1, . . . , PM
be its zeros with multiplicities p1, . . . , pM > 0 and Q1, . . . , QN its poles with
multiplicities q1, . . . , qN > 0. The divisor

D = p1P1 + . . . + pMPM − q1Q1 − . . .− qNQN = (f)

is called the divisor of f and is denoted by (f). A divisor D is called principal
if there exists a function f with (f) = D.

Obviously we have
(fg) = (f) + (g) ,

where f and g are two meromorphic functions on R.

Definition 26. Two divisors D and D′ are called linearly equivalent if the
divisor D −D′ is principal. The corresponding equivalence class is called the
divisor class.

We denote linearly equivalent divisors by D ≡ D′. Divisors of Abelian
differentials are also well-defined. We have already seen that the order of the
point N(P ) defined by (1.51) is independent of the choice of a local parameter
and is a characteristic of the Abelian differential. The set of points P ∈ R
with N(P ) 	= 0 is finite.
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Definition 27. The divisor of an Abelian differential Ω is

(Ω) =
∑

P∈R
N(P )P ,

where N(P ) is the order of the point P of Ω.

Since the quotient of two Abelian differentials

Ω1/Ω2

is a meromorphic function any two divisors of Abelian differentials are linearly
equivalent. The corresponding class is called canonical. We will denote it by C.

Any principal divisor can be represented as the difference of two positive
linearly equivalent divisors

(f) = D0 −D∞ , D0 ≡ D∞ ,

where D0 is the zero divisor and D∞ is the pole divisor of f . Corollary 2
implies that

deg(f) = 0 ,

i.e., all principal divisors have zero degree. All canonical divisors have the
same degree.

The Abel map is defined for divisors in a natural way

A(D) =
N∑

j=1

nj

Pj∫

P0

ω . (1.70)

If the divisor D is of degree zero, then A(D) is independent of P0

D = P1 + . . . + PN −Q1 − . . .−QN ,

A(D) =
N∑
i=1

Pi∫

Qi

ω . (1.71)

Theorem 17 (Abel’s theorem). The divisor D ∈ Div (R) is principal if
and only if:

(1) deg D = 0
(2) A(D) ≡ 0

The necessity of the first condition is already shown in Corollary 2. Let f be
a meromorphic function with the divisor

(f) = P1 + . . . + PN −Q1 − . . .−QN



1 Riemann Surfaces 39

(these points need not be different). Then

Ω =
df
f

= d(log f)

is an Abelian differential of the third kind. Since periods of Ω are integer
multiples of 2πi, it can be represented as

Ω =
N∑

i=1

ΩPiQi +
g∑

k=1

nkωk

with nk ∈ ZZ. The representation (1.67) for the b-periods of the normalized
differentials of the third kind implies A(D) ≡ 0.

Corollary 7. All linearly equivalent divisors are mapped by the Abel map to
the same point of the Jacobian

A((f) + D) = A(D) .

The Abel theorem can be formulated in terms of any basis ω̃ = (ω̃1, . . . , ω̃g)
of holomorphic differentials. In this case the second condition of the theorem
reads

N∑

i=1

Pi∫

Qi

ω̃ ≡ 0 (mod periods of ω̃).

1.5.2 The Riemann–Roch Theorem

Let D∞ be a positive divisor onR. A natural problem is to describe the vector
space of meromorphic functions with poles at D∞ only. More generally, let D
be a divisor on R. Let us consider the vector space

L(D) = {f meromorphic functions on R | (f) ≥ −D or f ≡ 0}.

Let us split
−D = D0 −D∞

into negative and positive parts

D0 =
∑

niPi , D∞ =
∑

mkQk ,

where both D0 and D∞ are positive. The space L(D) of dimension

l(D) = dim L(D)

consists of the meromorphic functions with zeros of order at least ni at Pi
and with poles of order at most mk at Qk.

Similarly, let us denote by

H(D) = {Ω Abelian differential on R | (Ω) ≥ D or Ω ≡ 0}
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the corresponding vector space of differentials, and by

i(D) = dim H(D)

its dimension, which is called the index of speciality of D.
It is easy to see that l(D) and i(D) depend only on the divisor class of D,

and
i(D) = l(C −D) , (1.72)

where C is the canonical divisor class. Indeed, let Ω0 be a non-zero Abelian dif-
ferential and C = (Ω0) be its divisor. The map H(D)→ L(C−D) defined by

H(D) � Ω −→ Ω

Ω0
∈ L(C −D)

is an isomorphism of linear spaces, which implies i(D) = l(C −D).

Theorem 18 (Riemann–Roch theorem). Let R be a compact Riemann
surface of genus g and D a divisor on R. Then

l(D) = deg D − g + 1 + i(D) . (1.73)

This identity can be proved by an analysis of the singularities and the
periods of the differential df for a function f ∈ L(D). However the proof is
rather involved [FK92].2 Many important results can be easily obtained from
this fundamental theorem.

Since the index i(D) is non-negative one has

Theorem 19 (Riemann’s inequality). For any divisor D

l(D) ≥ deg D + 1− g .

This has the following immediate consequence.

Corollary 8. For any positive divisor D with deg D = g + 1 there exists a
non-constant meromorphic function in L(D).

Let us consider a divisor on a Riemann surface of genus zero which consists
of one point D = P . Riemann’s inequality implies l(P ) ≥ 2. There exists a
non-trivial function f with 1 pole on R. It is a holomorphic covering f :
R→ Ĉ. Since f has only one pole, every value is assumed once (Corollary 2),
therefore R and Ĉ are conformally equivalent.

Corollary 9. Any Riemann surface of genus 0 is conformally equivalent to
the complex sphere Ĉ.

2 Note the difference in notations by the sign of D. Our space L(D) is identi-
fied with the space of holomorphic sections of the holomorphic line bundle L[D]
(see Sect. 1.7).
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Corollary 10. The degree of the canonical class is

deg C = 2g − 2 . (1.74)

The Riemann–Roch theorem implies for the canonical divisor

degC = l(C) + g − 1− i(C) .

Since the spaces of holomorphic differentials and functions are g- and
1-dimensional respectively, using (1.72), l(C) = i(0) = g, i(C) = l(0) = 1, one
arrives at (1.74).

Corollary 11. On a compact Riemann surface there is no point where all
holomorphic differentials vanish simultaneously.

Indeed, suppose there exists such a point P ∈ R, i.e., i(P ) = g. The Riemann–
Roch theorem for the divisor D = P implies l(P ) = 2, i.e., there exists a
non-constant meromorphic function f with only one simple pole. This implies
that f : R→ Ĉ is bi-holomorphic, in particular g = 0.

1.5.3 Jacobi Inversion Problem

Now we come to more complicated properties of the Abel map. Let us fix a
point P0 ∈ R. From corollary 11 of the Riemann–Roch theorem we know that
all holomorphic differentials do not vanish simultaneously. Therefore dA(P ) =
ω(P ) 	= 0, which shows that the Abel map is an immersion (the differential
of the map vanishes nowhere on R).

Proposition 5. The Abel map

A : R → Jac(R)

P �→
∫ P

P0

ω (1.75)

is an embedding, i.e., the map (1.75) is an injective immersion.

The injectivity follows from Abel’s theorem. Suppose there exist P1, P2 ∈ R
with A(P1) = A(P2), i.e., the divisor P1−P2 is principal. Functions with one
pole do not exist for Riemann surfaces of genus g > 0, thus the points must
coincide P1 = P2.

The Jacobi variety of a Riemann surface of genus one is a one-dimensional
complex torus, which is itself a Riemann surface of genus one (see Sect. 1.1.2).

Corollary 12. A Riemann surface of genus one is conformally equivalent to
its Jacobi variety.
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Although the next theorem looks technical (see for example [FK92] for the
proof), it is an important result often used.

Theorem 20 (Jacobi inversion problem). Let Dg be the set of positive
divisors of degree g. The Abel map on this set

A : Dg → Jac(R)

is surjective, i.e., for any ξ ∈ Jac(R) there exists a degree g positive divisor
P1 + . . . + Pg ∈ Dg (the Pi need not be different) satisfying

g∑

i=1

∫ Pi

P0

ω = ξ. (1.76)

1.5.4 Special Divisors and Weierstrass Points

Definition 28. A positive divisor D of degree deg D = g is called special if
i(D) > 0, i.e., there exists a holomorphic differential ω with

(ω) ≥ D . (1.77)

The Riemann–Roch theorem implies that (1.77) is equivalent to the existence
of a non-constant function f with (f) ≥ −D. Since the space of holomorphic
differentials is g-dimensional, (1.77) is a homogeneous linear system of g equa-
tions in g variables. This shows that most of the positive divisors of degree g
are non-special.

Definition 29. A point P ∈ R is called the Weierstrass point if the divisor
D = gP is special.

The Weierstrass points are special points of R. Weierstrass points exists on
Riemann surfaces of genus g > 1. They coincide with the zeros of the holo-
morphic q-differential Hdzq with q = g(g + 1)/2 and

H := det

⎛

⎜⎜⎜⎝

h1 . . . hg
h′

1 . . . h′
g

...
...

h
(g−1)
1 . . . h

(g−1)
g

⎞

⎟⎟⎟⎠ , (1.78)

where ωk = hk(z)dz are the local representations of a basis of holomorphic
differentials. Indeed, H vanishes at P0 if and only if the matrix in (1.78)
has a non-zero vector (α1, . . . , αg)T in the kernel. In this case the differential∑g

k=1 αkhk has a zero of order g at P0, which implies i(gP0) > 0.
The number of the Weierstrass points is bounded by the number of zeros

of H , which is g3 − g.



1 Riemann Surfaces 43

1.5.5 Hyperelliptic Riemann Surfaces

Let R be a compact Riemann surface of a hyperelliptic curve as in Theorem 1.
On this Riemann surface there exist meromorphic functions with precisely two
poles counting multiplicities. Examples of such functions are λ and 1

λ−λ0
with

arbitrary λ0. This observation leads to an equivalent definition of hyperelliptic
Riemann surfaces.

Definition 30. A compact Riemann surface R of genus g ≥ 2 is called hy-
perelliptic if there exists a positive divisor D on R with

deg D = 2 , l(D) ≥ 2 .

A non-constant meromorphic function Λ in L(D) defines a two-sheeted
covering of the complex sphere

Λ : R → Ĉ . (1.79)

All the ramification points of this covering have branch numbers 1.
It is not difficult to show that two hyperelliptic Riemann surfaces are

conformally equivalent if and only if their branch points differ by a fractional
linear transformation. The branch points can be used as parameters in the
moduli space of hyperelliptic curves. The complex dimension of this space
is 2g − 1. Indeed, there are 2g + 2 branch points and three of them can be
normalized to 0, 1,∞ by a fractional linear transformation. We see that for
g = 2 this dimension coincides with the complex dimension 3g−3 of the space
of Riemann surfaces of genus g (see Sect. 1.8.1). This simple observation shows
that there exist non-hyperelliptic Riemann surfaces of genus g ≥ 3.

Theorem 21. Any Riemann surface of genus g = 2 is hyperelliptic.

This is not difficult to prove. The zero divisor (ω) of a holomorphic differential
on a Riemann surface R of genus 2 is of degree 2 = 2g − 2. Since i((ω)) > 0,
the Riemann–Roch theorem implies l((ω)) ≥ 2.

Special divisors on hyperelliptic Riemann surfaces are characterized by the
following simple property.

Proposition 6. Let R be a hyperelliptic Riemann surface and let λ : R→ Ĉ
be the corresponding two-sheeted covering (1.5) with branch points λk, k =
1 . . . , N . A positive divisor D of degree g is singular if and only if it contains
a pair of points (μ0, λ0), (−μ0, λ0) with the same λ-coordinate λ0 	= λk or a
double branch point 2(0, λk).

D being a special divisor implies that there exists a differential ω with
(ω) ≥ D. The differential ω is holomorphic, and due to Theorem 14 it can be
represented as

ω =
Pg−1(λ)

μ
dλ ,
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where Pg−1(λ) is a polynomial of degree g − 1. The differential ω has g − 1
pairs of zeros

(μn, λn), (−μn, λn) , n = 1, . . . , g − 1, Pg−1(λn) = 0 .

Since D is of degree g it must contain at least one of these pairs.

1.6 Theta Functions

1.6.1 Definition and Simplest Properties

Consider a g-dimensional complex torus Cg/Λ where Λ is a lattice of full rank:

Λ = AN + BM , A,B ∈ gl(g,C) , N,M ∈ ZZg , (1.80)

and the 2g columns of A,B are IR-linearly independent. Non-constant mero-
morphic functions on Cg/Λ exist only (see, for example, [Sie71]) if the complex
torus is an Abelian torus, i.e., if by an appropriate linear choice of coordinates
on Cg the lattice (1.80) can be reduced to a special form: A is a diagonal
matrix of the form

A = 2πi diag(a1 = 1, . . . , ag) , ak ∈ IN , ak divides ak+1 ,

and B is a symmetric matrix with negative real part. An Abelian torus with
a1 = . . . = ag = 1 is called principally polarized. Jacobi varieties of Riemann
surfaces are principally polarized Abelian tori. Meromorphic functions on
Abelian tori are constructed in terms of theta functions, which are defined
by their Fourier series.

Definition 31. Let B be a symmetric g × g matrix with negative real part.
The theta function is defined by the following series

θ(z) =
∑

m∈ZZg

exp{1
2
(Bm,m) + (z,m)} , z ∈ C .

Here
(Bm,m) =

∑

ij

Bijmimj , (z,m) =
∑

j

zjmj .

Since B has negative real part, the series converge absolutely and defines
an entire function on Cg.

Proposition 7. The theta function is even,

θ(−z) = θ(z) ,

and possesses the following periodicity property:

θ(z+2πiN+BM) = exp{−1
2
(BM,M)−(z,M)}θ(z) , N,M ∈ ZZg . (1.81)
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More generally one introduces theta functions with characteristics [α, β]

θ

[
α
β

]
(z) =

∑

m∈ZZg

exp
{

1
2
(B(m + α),m + α) + (z + 2πiβ,m + α)

}

= θ(z + 2πiβ + Bα) exp
{

1
2
(Bα,α) + (z + 2πiβ, α)

}
, (1.82)

z ∈ Cg, α, β ∈ IRg .

with the transformation law

θ

[
α
β

]
(z + 2πiN + BM) = (1.83)

exp
{
− 1

2 (BM,M)− (z,M) + 2πi((α,N)− (β,M))
}

θ

[
α
β

]
(z) .

1.6.2 Theta Functions of Riemann Surfaces

From now on we consider an Abelian torus which is a Jacobi variety, C/Λ =
Jac(R). By combining the theta function with the Abel map, one obtains the
following useful map on a Riemann surface:

Θ(P ) := θ(AP0 (P )− d) , AP0(P ) =
∫ P

P0

ω . (1.84)

Here we incorporated the base point P0 ∈ R in the notation of the Abel map,
and the parameter d ∈ Cg is arbitrary. The periodicity properties of the theta
function (1.81) imply the following

Proposition 8. Θ(P ) is an entire function on the universal covering R̃
of R. Under analytical continuation Mak ,Mbk along a- and b-cycles on the
Riemann surface, it is transformed as follows:

Mak Θ(P ) = Θ(P ) ,

Mbk Θ(P ) = exp{− 1
2Bkk −

∫ P
P0

ωk + dk} Θ(P ) . (1.85)

The zero divisor (Θ) of Θ(P ) on R is well defined.

Theorem 22. The theta function Θ(P ) either vanishes identically on R or
has exactly g zeros (counting multiplicities):

deg(Θ) = g .

Suppose Θ 	≡ 0. As in Sect. 1.4 consider the simply connected model Fg
of the Riemann surface. The differential d logΘ is well defined on Fg and the
number of zeros of Θ is equal to

deg(Θ) =
1

2πi

∫

∂Fg

d logΘ(P ) .
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using the periodicity properties of Θ we get (see Theorem 12 for notation) for
the values of d logΘ at the corresponding points

d logΘ(Q′
j) = d logΘ(Qj), d logΘ(P ′

j) = d logΘ(Pj)− ωj(Pj) . (1.86)

For the number of zeros of the theta function this implies

deg(Θ) =
1

2πi

g∑

j=1

∫

aj

ωj = .

A similar but more involved computation [FK92] of the integral

Ik =
1

2πi

∫

∂Fg

d logΘ(P )
∫ P

P0

ωk .

implies the following Jacobi inversion problem for the zeros of (Θ).

Proposition 9. Suppose Θ 	≡ 0. Then its g zeros P1, . . . , Pg satisfy

g∑

i=1

∫ Pi

P0

ω = d−K , (1.87)

where K is the vector of Riemann constants

Kk = πi +
Bkk
2
− 1

2πi

∑

j �=k

∫

aj

ωj

∫ P

P0

ωk . (1.88)

One can easily check that K ∈ Jac(R) is well defined by (1.88), i.e., it is
independent of the integration path. On the other hand, K depends on the
choice of the base point P0.

1.6.3 Theta Divisor

Let us denote by Jk the set of equivalence classes (of linearly equivalent divi-
sors, see Sect. 1.5.1) of divisors of degree k. The Abel theorem and the Jacobi
inversion imply a canonical identification of Jg and the Jacobi variety

Jg � D ←→ A(D) ∈ Jac(R) .

The zero set of the theta function of a Riemann surface, which is called the
theta divisor can be characterized in terms of divisors on R as follows. Take
a non-special divisor D̃ = P1 + . . . + Pg and distinguish one of its points
D̃ = P1 + D, D ∈ Jg−1. Proposition 9 implies that θ(

∫ P
ω − A(̃(D)) − K)

vanishes in particular at P1, and one has θ(A(D)−K) = 0. Since non-special
divisors form a dense set, one has this identify for any D ∈ Jg−1. Moreover,
this identity gives a characterization of the theta divisor [FK92].
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Theorem 23. The theta divisor is isomorphic to the set Jg−1 of equivalence
classes of positive divisors of degree g − 1:

θ(e) = 0⇔ ∃D ∈ Jg−1, D ≥ 0 : e = A(D) + K .

For any D ∈ Jg−1 the expression A(D) + K ∈ Jac(R) is independent of
the choice of the initial integration point P0.

Using this characterization of the theta divisor one can complete the de-
scription of Proposition 9 of the divisor of the function Θ

Theorem 24. Let Θ(P ) = θ(AP0 (P ) − d) be the theta function (1.84) on a
Riemann surface and let the divisor D ∈ Jg, D ≥ 0 be a Jacobi inversion
(1.76) of d−K,

d = A(D) + K .

Then the following alternative holds:
(i) Θ ≡ 0 iff i(D) > 0, i.e., if the divisor D is special.
(ii) Θ 	≡ 0 iff i(D) = 0, i.e., if the divisor D is non-special. In the last

case, D is precisely the zero divisor of Θ.

The evenness of the theta function and Theorem 23 imply that
θ(d − A(P )) ≡ 0 is equivalent to the existence (for any P ) of a positive
divisor DP of degree g − 1 satisfying A(D) + K − A(P ) = A(DP ) + K.
Due to the Abel theorem the last identity holds if and only if the divisors D
and DP + P are linearly equivalent, i.e., if there exists a function in L(D)
vanishing at the (arbitrary) point P . In terms of the dimension of L(D) the
last property can be formulated as l(D) > 1, which is equivalent to i(D) > 0.

Suppose now that D is non-special. Then, as we have shown above, Θ 	≡ 0,
and Proposition 9 implies for the zero divisor of Θ

A((Θ)) = A(D) .

The non-speciality of D implies D = (Θ).
Although the vector of Riemann constants K appeared in Proposition 9

just as a result of computation, K plays an important role in the theory
of theta functions. The geometrical nature of K is partially clarified by the
following

Proposition 10.
2K = −A(C) ,

where C is a canonical divisor.

Indeed, take an arbitrary positive D1 ∈ Jg−1. Due to Theorem 23 the
theta function vanishes at e = A(D1) +K. Theorem 23 applied to θ(−e) = 0
implies the existence of a positive divisor D2 ∈ Jg−1 with −e = A(D2) + K.
For 2K this gives

2K = A(D1 + D2) .
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It is not difficult to show that this representation (where D1 ∈ Jg−1 is
arbitrary) implies l(D1 + D2) ≥ g, or equivalently i(D1 + D2) > 0, i.e., the
divisor D1 + D2 is canonical.

The vanishing of theta functions at some points follows from their algebraic
properties.

Definition 32. Half-periods of the period lattice

Δ = 2πiα + Bβ , α = (α1, . . . , αg) , β = (β1, . . . , βg), αk, βk ∈
{

0,
1
2

}
.

are called half periods or theta characteristics. A half period is called even
(odd) if 4(α, β) = 4

∑
αkβk is even (odd).

We denote the theta characteristic by Δ = [α, β]. The theta function θ(z)
vanishes in all odd theta characteristics

θ(Δ) = θ(−Δ + 4πiα + 2Bβ) = θ(−Δ) exp(−4πi(α, β)) .

To any odd theta characteristic Δ there corresponds a positive divisor DΔ

of degree g − 1,
Δ = A(DΔ) + K . (1.89)

Since 2Δ belongs to the lattice of Jac(R), doubling of (1.89) yields

A(2DΔ) = −2K = A(C) .

The next corollary follows from the Abel theorem.

Corollary 13. For any odd theta characteristic Δ there exists a holomorphic
differential ωΔ with

(ωΔ) = 2DΔ . (1.90)

In particular all zeros of ωΔ are of even multiplicity.

Note, that identity (1.90) is an identity on divisors and not only on equivalence
classes of divisors.

The differential ωΔ can be described explicitly in theta functions.
To any point z of the Abelian torus one can associate a number s(z)

determined by the condition that all partial derivatives of θ up to order s(z)−1
vanish at z and at least one partial derivative of order s(z) does not vanish at
z. For most of the points s = 0. The points of the theta divisor are precisely
those with s > 0. In particular, s(Δ) > 0 for any odd theta characteristic Δ.
An odd theta characteristic Δ is called non-singular iff s(Δ) = 1.

Let D = P1 + . . .+Pg−1 be a positive divisor of degree g−1. Consider the
function f(P1, . . . , Pg−1) = θ(A(D) + K) of g − 1 variables. Since f vanishes
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identically, differentiating it with respect to Pk one sees that the holomorphic
differential

h =
∑

i

∂θ

∂zi
(e)ωi

with e = A(D) + K vanishes at all points Pk. Let Δ be an odd non-singular
theta characteristic. Then DΔ ∈ Jg−1 is uniquely determined by the identity
(1.89), i.e., i(DΔ) = 1. Indeed, if DΔ is not determined by its Abel image
then it is linearly equivalent to a divisor P + Dg−2, Dg−2 ∈ Jg−2 with an
arbitrary point P . Repeating the arguments with the differential h above
we see that it vanishes identically on R, i.e., all the derivatives of the theta
function θ(Δ) vanish. This contradicts the non-singularity of Δ. Finally, we
arrive at the following explicit description the one-dimensional (i(DΔ) = 1)
space of holomorphic differentials vanishing at DΔ.

Proposition 11. Let Δ be a non-singular odd theta characteristic and DΔ the
corresponding (1.89) positive divisor of degree g − 1. Then the holomorphic
differential ωΔ of Corollary 13 is given by the expression

ωΔ =
g∑

i=1

∂θ

∂zi
(Δ)ωi ,

where ωi are normalized holomorphic differentials.

We finish this section with Riemann’s complete description of the theta
divisor. The proof of this classical theorem can be found for example in [FK92,
Lew64]. It is based on considerations similar to the ones in this section, but
technically more involved.

Theorem 25. The following two characterizations of a point e ∈ Jac(R) are
equivalent:
• The theta function and all its partial derivatives up to order s−1 vanish

in e and at least one partial derivative of order s does not vanish at e.
• e = A(D) + K where D is a positive divisor of degree g and i(D) = s.

1.7 Holomorphic Line Bundles

In this section some results of the previous sections are formulated in the lan-
guage of holomorphic line bundles. This language is useful for generalizations
to manifolds of higher dimension, where one does not have concrete tools as
in the case of Riemann surfaces, and where one has to rely on more abstract
geometric constructions.

1.7.1 Holomorphic Line Bundles and Divisors

Let (Uα, zα) be coordinate charts of an open cover ∪α∈AUα = R of a Riemann
surface. The geometric idea behind the concept of a holomorphic line bundle
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is the following. One takes the union Uα×C over all α ∈ A and “glues” them
together by identifying (P, ξα) ∈ Uα×C with (P, ξβ) ∈ Uβ×C for P ∈ Uα∩Uβ
linearly holomorphically, i.e., ξβ = g(P )ξα where g(P ) : Uα ∩ Uβ :→ C is
holomorphic.

Let us make this “constructive” definition rigorous. Denote by

O∗(U) ⊂ O(U) ⊂M(U)

the sets of nowhere vanishing holomorphic functions, of holomorphic func-
tions and of meromorphic functions on U ⊂ R, respectively. A holomorphic
line bundle is given by its transition functions, which are holomorphic non-
vanishing functions gαβ ∈ O∗(Uα ∩ Uβ) satisfying

gαβ(P )gβγ(P ) = gαγ(P ) ∀P ∈ Uα ∩ Uβ ∩ Uγ . (1.91)

This identity implies in particular gαα = 1 and gαβgβα = 1.
Introduce on triples [P,Uα, ξ], P ∈ Uα, α ∈ A, ξ ∈ C the following equiva-

lence relation:

[P,Uα, ξ] ∼ [Q,Uβ, η]⇔ P = Q ∈ Uα ∩ Uβ , η = gβαξ . (1.92)

Definition 33. The union of Uα × C identified by the equivalence relation
(1.92) is called a holomorphic line bundle L = L(R). The mapping π : L→R
defined by [P,Uα, ξ] �→ P is called the canonical projection. The linear space
LP := π−1(P ) ∼= {P} × C is called the fibre of L over P .

The line bundle with all gαβ = 1 is called trivial.
A set of meromorphic functions φα ∈ M(Uα) such that φα/φβ ∈ O∗(Uα ∩

Uβ) for all α, β is called a meromorphic section φ of a line bundle L(R) defined
by the transition functions

gαβ = φα/φβ .

Note that the divisor (φ) of the meromorphic section φ is well defined by
(φ)

∣∣∣
Uα

= (φα)
∣∣∣
Uα

. In the same way one defines a line bundle L(U) and its

sections on an open subset U ⊂ R. Bundles are locally trivializable, i.e., there
always exist local sections: a local holomorphic section over Uα can be given
simply by

Uα � P �→ [P,Uα, 1]. (1.93)

One immediately recognizes that holomorphic (Abelian) differentials
(see Definitions 17, 19) are holomorphic (meromorphic) sections of a holo-
morphic line bundle. This line bundle, given by the transition functions

gαβ(P ) =
dzβ
dzα

(P ) ,

is called the canonical bundle and denoted by K.
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Obviously a line bundle is completely determined by a meromorphic
section. In Sects. 1.4 and 1.5.5 we dealt with meromorphic sections directly
and formulated results in terms of sections without using the bundle language.

Let L be a holomorphic line bundle (1.92) with trivializations (1.93) on
Uα. Local sections

Uα � P �→ [P,Uα, hα(P )] ,

where hα ∈ O∗(Uα) define another holomorphic line bundle L′ which is called
(holomorphically) isomorphic to L. We see that fibres of isomorphic holomor-
phic line bundles can be holomorphically identified hα : L(Uα) → L′(Uα).
This is equivalent to the following definition.

Definition 34. Two holomorphic line bundles L and L′ are isomorphic if
their transition functions are related by

g′αβ = gαβ
hα
hβ

(1.94)

with some hα ∈ O∗(Uα).

We have seen that holomorphic line bundles can be described by their
meromorphic sections. Therefore it is not suprising that holomorphic line
bundles and divisors are intimately related. To each divisor one can natu-
rally associate a class of isomorphic holomorphic line bundles. Let D be a
divisor on R. Consider a covering {Uα} such that each point of the divisor
belongs to only one Uα. Take φα ∈ M(Uα) such that the divisor of φα is
presicely the part of D lying in Uα,

(φα) = Dα := D |Uα .

For example take φα = zniα , where zα is a local parameter vanishing at the
point Pi ∈ Uα of the divisor D =

∑
niPi. The so defined meromorphic section

φ determines a line bundle L associated with D. If φ′
α ∈M(Uα) are different

local sections with the same divisor D = (φ′), then hα = φ′
α/φα ∈ O∗(Uα)

and φ′ determines a line bundle L′ isomorphic to L. We see that a divisor D
determines not a particular line bundle but a class of isomorphic line bundles
together with corresponding meromorphic sections φ such that (φ) = D. This
relation is clearly an isomorphism. Let us denote by L[D] isomorphic line
bundles determined by D.

It is natural to get rid of sections in this relation and to describe line
bundles in terms of divisors.

Lemma 6. The holomorphic line bundles L[D] and L[D′] are isomorphic if
and only the corresponding divisors D and D′ are linearly equivalent.

Indeed, choose a covering {Uα} such that each point of D and D′ belongs to
only one Uα. Take h ∈M(R) with (h) = D−D′. This function is holomorphic
on each Uα ∩ Uβ, α 	= β. If φ is a meromorphic section of L[D] then hφ
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is a meromorphic section of L[D′], which implies (1.94) for the transition
functions. Conversely, let φ and φ′ be meromorphic sections of isomorphic
line bundles L[D] and L[D′] respectively, (φ) = D, (φ′) = D′. Identity (1.94)
implies that φαhα/φ

′
α is a meromorphic function on R. The divisor of this

function is D −D′, which yields D ≡ D′.
It turns out that Lemma 6 implies a classification of holomorphic line bun-

dles. Namely, every holomorphic line bundle L comes as a bundle associated
to the divisor L = L[(φ)] of a meromorphic section φ, and every holomorphic
line bundle possesses a meromorphic section. The proofs of the last fact are
based on homological methods and are rather involved [GH94,Gu66, Spr81].
We arrive at the following fundamental classification theorem.

Theorem 26. There is a one to one correspondence between classes of iso-
morphic holomorphic line bundles and classes of linearly equivalent divisors.

The degree degD is called the degree of the line bundle L[D].
Thus, holomorphic line bundles are classified by elements of Jn (see

Sect. 1.6.3), where n is the degree of the bundle n = degL. Due to the Abel
theorem and Jacobi inversion, elements of Jn can be identified with the points
of the Jacobi variety. Namely, choose some D0 ∈ Jn as a reference point. Then
due to the Abel theorem the class of divisor D ∈ Jn is given by the point

A(D −D0) =
∫ D

D0

ω ∈ Jac(R) .

Conversely, due to the Jacobi inversion, given some D0 ∈ Jn, to any point
d ∈ Jac(R) there corresponds D ∈ Jn satisfying A(D −D0) = d.

1.7.2 Picard Group: Holomorphic Spin Bundle

We will not distinguish isomorphic line bundles and denote by L[D] the iso-
morphic line bundle associated with the divisor class D.

The set of line bundles can be equipped with an Abelian group structure.
If L and L′ are bundles with transition functions gαβ and g′αβ respectively,
then the line bundle. L′L−1 is defined by the transition functions g′αβg

−1
αβ .

Definition 35. The Abelian group of line bundles on R is called the Picard
group of R and denoted by Pic(R)

Let φ and φ′ be meromorphic sections of L and L′ respectively. Then φ′/φ
is a meromorphic section of L′L−1. For the divisors of the sections one has
(φ′/φ) = (φ′)− (φ). The classification Theorem 26 implies the following

Theorem 27. The Picard group Pic(R) is isomorphic to the group of divisors
Div(R) modulo linear equivalence.

Holomorphic q-differentials of Sect. 1.5.4 are holomorphic sections of the
bundle Kq.
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Corollary 14. Holomorphic line bundles L1, L2, L3 satisfy

L3 = L2L
−1
1

if and only if

degL3 = degL2 − degL1 and A(D3 −D2 + D1) = 0 ,

where Di are the divisors corresponding to Li = L[Di].

For the proof one uses the characterization of line bundles via their mero-
morphic sections φ1, φ2, φ3 and applies the Abel theorem to the meromorphic
function φ3φ1/φ2.

Since the canonical bundle K is of even degree one can define a “square
root” of it.

Definition 36. A holomorphic line bundle S satisfying

SS = K

is called a holomorphic spin bundle. Holomorphic (meromorphic) sections of
S are called holomorphic (meromorphic) spinors.

Spinors are differentials of order 1/2. In local coordinates they are given
by expressions s(z)

√
dz where s(z) is holomorphic (meromorphic) for holo-

morphic (meromorphic) spinors.

Proposition 12. There exist exactly 4g non-isomorphic spin bundles on a
Riemann surface of genus g.

This fact can be shown using the description of classes of isomorphic holo-
morphic line bundles by the elements of the Jacobi variety, see the end of
Sect. 1.7.1. The classes of linearly equivalent divisors are isomorphic to points
of the Jacobi variety

D ∈ Jn ↔ d = A(D − nP0) ∈ Jac(R) ,

where P0 is a reference point P0 ∈ R. For the divisor class DS of a holomorphic
spin bundle Corollary 14 implies

degDS = g − 1 and 2A(DS) = A(C) ,

where C is the canonical divisor. Proposition 10 provides us with the general
solution to this problem,

A(DS) = −K + Δ ,

where K is the vector of Riemann constants and Δ is one of the 4g half-periods
of Definition 32. Due to the Jacobi inversion the last equation is solvable
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(the divisor DS ∈ Jg−1 is not necessarily positive) for any Δ. We denote by
DΔ ∈ Jg−1 the divisor class corresponding to the half-period Δ and by SΔ the
corresponding holomorphic spin bundle SΔ := L[DΔ]. The line bundles with
different half-periods can not be isomorphic since the images of their divisors
in the Jacobi variety are different.

Note that we obtained a geometrical interpretation for the vector of Rie-
mann constants.

Corollary 15. Up to a sign the vector of Riemann constants is the image
under the Abel map of the divisor of the holomorphic spin bundle with the
zero theta characteristic

K = −A(D[0,0] − (g − 1)P0) .

This corollary clarifies the dependence of KP0 on the base point and on the
choice of the canonical homology basis.

Finally, let us give a geometric interpretation of the Riemann–Roch theo-
rem. Denote by h0(L) the dimension of the space of holomorphic sections of
the line bundle L.

Theorem 28 (Riemann–Roch theorem). For any holomorphic line bun-
dle π : L→R over a Riemann surface R of genus g

h0(L) = degL− g + 1 + h0(KL−1) . (1.95)

This theorem is just a reformulation of Theorem 18. Indeed, let D = (φ)
be the divisor of a meromorphic section of the line bundle L = L[D] and let
h be a holomorphic section of L. The quotient h/φ is a meromorphic function
with the divisor (h/φ) ≥ −D. On the other hand, given f ∈ M(R) with
(f) ≥ −D the product fφ is a holomorphic section of L. We see that the space
of holomorphic sections of L can be identified with the space of meromorphic
functions L(D) defined in Sect. 1.5.2. Similarly, holomorphic sections of KL−1

can be identified with Abelian differentials with divisors (Ω) ≥ D. This is the
space H(D) of Sect. 1.5.2 and its dimension is i(D). Now the claim follows
from (1.73).

The Riemann–Roch theorem does not allow us to compute the number of
holomorphic sections of a spin bundle. The identity (1.95) implies only that
degS = g − 1. A computation of h0(S) is a rather delicate problem. It turns
out that the dimension of the space of holomorphic sections of SΔ depends
on the theta characteristic Δ and is even for even theta characteristics and
odd for odd theta characteristics [Ati71]. Spin bundles with non-singular theta
characteristics have no holomorphic sections if the characteristic is even and
have a unique holomorphic section if the characteristic is odd.

Results of Sect. 1.6.3 allow us to show this easily for odd theta character-
istics. Take the differential ωΔ of Corollary 13. The square root of it

√
ωΔ is

a holomorphic section of SΔ.



1 Riemann Surfaces 55

Proposition 13. Spin bundles SΔ with odd theta characteristics Δ possess
global holomorphic sections.

If Δ is a non-singular theta characteristic then the corresponding positive
divisor DΔ of degree g − 1 is unique (see the proof of Proposition 11). This
implies the uniqueness of the differential with (ω) = DΔ and h0(SΔ) = 1.
This holomorphic section is given by

√√√√
g∑

i=1

∂θ

∂zi
(Δ)ωi .

1.8 Schottky Uniformization

1.8.1 Schottky Group

Let C1, C
′
1, . . . , CN , C′

N be a set of 2N mutually disjoint Jordan curves on Ĉ.
They comprise the boundary of a domain Π ⊂ Ĉ which is a topological sphere
with 2N holes (see Fig. 1.22). Let us assume that the curves Cn and C′

n are
identified by σCn = C′

n where σ is a loxodromic transformation,

σnz −Bn
σnz −An

= μn
z −Bn
z −An

, |μn| < 1, n = 1, . . . , N , (1.96)

which maps the exterior of Cn to the interior of C′
n. The points An, Bn are

the fixed points of this transformation.
Fractional-linear transformations can be canonically identified with the

elements of the matrix group PSL(2,C):
(
a b
c d

)
↔ σz =

az − b

cz − d
, a, b, c, d ∈ C , ad− bc = 1 . (1.97)

The canonical matrix representation of the transformation (1.96) is as follows

(
a b
c d

)
=

1
A−B

(
A
√
μ− B√

μ AB( 1√
μ −
√
μ)

√
μ− 1√

μ
A√
μ −B

√
μ

)
.

The derivative of the transformation (1.97) is σ′z = (cz + d)−2. It is an
isometry for the points satisfying |cz + d| = 1. These points comprise the
isometric circle Cσ of σ with the center at − dc and the radius 1

|c| . The isometric
circles Cσ and Cσ−1 of the transformations (1.96) have equal radii and are
disjoint.

Definition 37. The group G generated by the transformations σ1, . . . , σN is
called a Schottky group. If all the boundary curves Cn, C

′
n are circles the

Schottky group is called classical.
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b1

b2

B2

a2

C2

A2

B1

a1

C1

A1

C1

C2

Fig. 1.22. The fundamental domain Π of a Schottky group with a canonical
homology basis. The cycles an coincide with the positively oriented C′

n ; bn run
on Π between the points zn ∈ Cn and σnzn ∈ C′

n

These groups were introduced in [Sch87] by Schottky who has established
their fundamental properties and investigated their automorphic functions.
The domain Π is the fundamental domain of the group G. The existence
of nonclassical (for an arbitrary system of generators) Schottky groups is
shown in [Mar74]. A special case of classical Schottky groups are the Schot-
tky groups with fundamental domains bounded by isometric circles of their
generators. General Schottky groups can be characterized as free, purely lox-
odromic finitely generated discontinuous groups [Mas67].

The limit set Λ(G) of the Schottky group is the closure of the fix points
of all its elements. The discontinuity set Ω(G) = C \ Λ(G) factorized with
respect to G is a compact Riemann surface Ω(G)/G of genus N . According
to the classical uniformization theorem [Fo29] any compact Riemann surface
of genus N can be represented in this form.

Theorem 29 (Schottky uniformization). Let R be a Riemann surface
of genus N with a set of homologically independent simple disjoint loops
v1, . . . , vN . Then there exists a Schottky group G such that

R = Ω(G)/G ,

and the fundamental domain Π(G) is conformally equivalent to R cut along
the loops v1, . . . , vN .

Under the Schottky uniformization the loops vn are mapped to the bound-
ary curves Cn, C

′
n. The loop system v1, . . . , vN generates a subgroup of the

homology group H1(R,ZZ). Two loop systems generating the same subgroup
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determine the same Schottky group but with a different choice of generators.
The Schottky groups G and G′ corresponding to the loop systems generating
different subgroups of H1(R,ZZ) are different.

The Schottky group is parametrized by the fix points A1, B1, . . . , AN , BN
of the generators and their trace parameters μ1, . . . , μN . The Schottky groups
G and G′ with the parameters A1, B1, . . . , AN , BN and A′

1, B
′
1, . . . , A

′
N , B′

N

which differ by a common fractional-linear transformation uniformize the same
Riemann surface. This parameter counting gives the correct number 3N−3 for
the complex dimension of the moduli space of Riemann surfaces of genus N .

It is unknown whether every Riemann surface can be uniformized by a
classical Schottky group.

The Schottky uniformization of R is determined by a half basis of
H1(Ω(G)/G,ZZ), and it is natural to choose a canonical basis of H1(R,ZZ)
respecting this structure. Such a canonical basis of cycles is illustrated in
Fig. 1.22: the cycle an coincides with the positively oriented curve C′

n, and
the cycle bn connects the points zn ∈ Cn and σnzn ∈ C′

n, and the b-cycles are
mutually disjoint.

1.8.2 Holomorphic Differentials as Poincaré Series

Denote by Gn the subgroup of the Schottky group G generated by σn. The
cosets G/Gn and Gm\G/Gn are the sets of all elements

σ = σj1i1 . . . σjkik , i ∈ {1, . . . , N} , j ∈ ZZ \ {0} ,

such that ik 	= n and for Gm\G/Gn in addition i1 	= m.
The following theorem is classical (see [Bur92,Bak97]).

Theorem 30. If the Poincaré series

ωn =
∑

σ∈G/Gn

(
1

z − σBn
− 1

z − σAn

)
dz (1.98)

are absolutely convergent on Π(G), they are holomorphic differentials of
the Riemann surface Ω(G)/G normalized in the canonical basis shown in
Fig. 1.22. The period matrix is

Bnm =
∑

σ∈Gm\G/Gn
log{Bm, σBn, Am, σAn} , m 	= n ,

Bnn = logμn +
∑

σ∈Gn\G/Gn
log{Bn, σBn, An, σAn} , (1.99)

where the curly brackets denote the cross-ratio

{z1, z2, z3, z4} =
(z1 − z2)(z3 − z4)
(z2 − z3)(z4 − z1)

.
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The series (1.98) have no poles in Π(G). The normalization
∫
am

ωn = 2πiδnm
follows from a computation of residues. Indeed, if σ = σj1i1 . . . σjkik , σ 	= I, then
both the points σBn and σAn are inside of C′

i1 when j1 > 0, and inside of Ci1
when j1 < 0. Only for σ = I the images σBn and σAn are separated: Bn is
inside of C′

n and An is inside of Cn.
The series (1.98) are (−2)-dimensional Poincaré series and can be written

in a slightly different form

ωn =
∑

σ∈Gn\G

(
1

σz −Bn
− 1

σz −An

)
σ′zdz , σ′z =

1
(cz + d)2

.

In this form it is easy to see that ωn(σz) = ωn(z), so ωn is a holomorphic
differential on R = Ω(G)/G. Using the invariance of the cross-ratio with
respect to fractional-linear transformations

{σz1, σz2, σz3, σz4} = {z1, z2, z3, z4}

one can derive (1.99) from the definition of the period matrix.
The problem of convergence of Poincaré series describing holomorphic dif-

ferentials is a non-trivial problem of crucial importance since one cannot rely
on computations with divergent series. This problem is ignored in some ap-
plied papers. For general Schottky groups and even for classical ones the
(−2)-dimensional Poincaré theta series can be divergent. However, the con-
vergence of these series is guaranteed if the fundamental domain Π(g) is “circle
decomposable”:

Assume that the Schottky group is classical and that 2N − 3 circles
L1, . . . , L2N−3 can be fixed on the fundamental domain Π(G) so that the
following conditions are satisfied:

• (a) The circles L1, . . . , L2N−3, C1, C
′
1, . . . , CN , C′

N are mutually disjoint.
• (b) The circles L1, . . . , L2N−3 divide Π(G) into 2N − 2 regions T1, . . . ,

T2N−2.
• (c) Each Ti is bounded by exactly three circles.

Such Schottky groups are called circle decomposable (see Fig. 1.23 for an ex-
ample of a circle decomposable Schootky group). In particular, each Schottky
group which has an invariant circle is circle decomposable by circles orthogo-
nal to the invariant circle.

The following elegant geometric convergence result is due to Schottky
[Sch87] (see also [FK65] for a proof).

Theorem 31 (Schottky condition). (−2)-dimensional Poincaré theta se-
ries corresponding to a circle decomposable Schottky group is absolutely con-
vergent on the whole fundamental domain of G.
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Fig. 1.23. The fundamental domain of a circle decomposable Schottky group

The convergence of (−2)-dimensional Poincaré theta series can be proved
also in the case when the circles Cn, C

′
n, n = 1, . . . , N are small and far

enough apart. The corresponding estimations can be found in [Bur92,Bak97]
and in the contribution by Schmies in this volume.

The convergence of the Poincaré theta series can be characterized in terms
of the metrical properties of the limiting set Λ(G). If ν is the minimal di-
mension for which the (−ν)-dimensional Poincaré theta series converge abso-
lutely, then the Hausdorff measure of Λ(G) is equal to ν

2 . In particular, the
1-dimensional Hausdorff measure of Λ(G) of a Schottky group with divergent
(−2)-dimensional Poincaré theta series is infinite. Examples of such classi-
cal Schottky groups with fundamental domains bounded by isometric circles
can be found in [Myr16, Aka67]. The class of Schottky groups with conver-
gent (−2)-dimensional Poincaré theta series is geometrically characterized in
[Bow79].

1.8.3 Schottky Uniformization of Real Riemann Surfaces

As it was mentioned in the preceding sections the problem of conver-
gence of the Poincaré theta series for the holomorphic differentials is
of crucial importance. Another important problem for the practical ap-
plication of Schottky uniformization is to determine the Schottky space
S = (A1, B1, μ1, . . . , AN , BN , μN ) ⊂ C3N of the uniformizing Schottky
groups. Both problems are so difficult that solving them for general Riemann
surfaces seems hopeless.
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The situation is more fortunate in the case of real Riemann surfaces, which
is the most important for applications. In this case one can find a Schottky uni-
formization with convergent Poincaré series and describe the Schottky space
S [Bob88,BBE+94]. Here we present the main ideas of this method.

Definition 38. A Riemann surface R with an anti-holomorphic involu-
tion τ : R → R is called a real Riemann surface. The connected com-
ponents X1, . . . , Xm of the set of fix points of τ are called real ovals. If
R \ {X1, . . . , Xm} has two connected components the Riemann surface is
called of decomposing type.

There are real Riemann surfaces without fix point of τ . Let R be of decom-
posing type and R+ and R− be two components of R \ {X1, . . . , Xm}. Both
R± are Riemann surfaces of type (g,m), i.e., they are homeomorphic to a
surface of genus g = N+1−m

2 with m boundary components.

Theorem 32. Every real Riemann surface of decomposing type possesses a
Schottky uniformization by a Fuchsian group G of the second kind. The
Poincaré theta series of dimension −2 of G are absolutely convergent.

The main idea behind this theorem is that in this case the Schottky group
is of Fuchsian type. Indeed, consider the classical Fuchsian uniformization of
the surface R+ = H/G. Here H is the upper half plane H = {z ∈ ZZ,�z > 0}
and the group G is a purely hyperbolic Fuchsian group of the second kind
[Fo29]. The matrix elements (1.97) of all the group elements of G are real and
satisfy |a+d| > 2. The group G is generated by the hyperbolic transformations
α1, β1, . . . , αg, βg and γ1, . . . , γm, m > 0, satisfying the constraint

α1β1α
−1
1 β−1

1 . . . αgβgα
−1
g β−1

g γ1 . . . γm = I .

Extending the action of G to the lower half-plane H = {z ∈ ZZ,�z < 0} we
obtain another component R− = H/G. The elements

σi = αi, σg+i = βi, σ2g+j = γj , i = 1, . . . , g; j = 1, . . . ,m− 1

acting on the whole Riemann sphere Ĉ generate a free, purely hyperbolic
group, which is a Schottky group uniformizing the Riemann surface R. It
possesses an invariant circle, which is the real line, and therefore is circle de-
composable. The convergence of the Poincaré series follows from Theorem 31.
Note that the Schottky group is classical since the fundamental domain of the
Fuchsian group can be chosen to be bounded by geodesics in the hyperbolic
geometry. These geodesics are arcs of circles orthogonal to the real line.

The Schottky uniformization of real Riemann surfaces of decomposing type
described above looks as follows. The circles Cn, C

′
n, n = 1, . . . , N are orthog-

onal to the real axis and their discs are disjoint (see Fig. 1.24 for the special
case of M-curves). The order of circles is arbitrary. Every pair Cn, C

′
n deter-

mines a hyperbolic transformation σn. The transformations σ1, . . . , N gen-
erate a Schottky group uniformizing a real Riemann surface of decomposing
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type. The number of real ovals is determined by the arrangement of the circles
Cn, C

′
n, n = 1, . . . , N . The Schottky parameters are real,

(A1, B1, μ1, . . . , AN , BN , μN) ∈ IR3N , 0 < μn < 1, n = 1, . . . , N .

The description of the Schottky space can be obtained from an analysis of the
invariant lines of the group elements of G (see [Kee65, Nat04]). We present
here the result for the case of M-curves.

A1 A2 A3B1B2B3

Fig. 1.24. Schottky uniformization of an M-curve

A real Riemann surface R of genus N with maximal possible number
m = N + 1 of real ovals is called an M-curve. The real ovals decompose it
into two components R± which are topological spheres with N +1 holes. The
Schottky space S is described as follows [Bob88,BBE+94]:

BN < BN−1 < . . . < B1 < A1 < . . . < AN , 0 <
√
μn < 1, n = 1, . . . , N ,

{Bn, Bn+1, An, An+1} >
(√

μn +√μn+1

1 +√μnμn+1

)2

, n = 1, . . . , N − 1 .

1.8.4 Schottky Uniformization of Hyperelliptic M-Curves

By imposing an additional symmetry to the Schottky data one obtains hyper-
elliptic Riemann surfaces. The additional constraint

Bn = −An, n = 1, . . . , N , (1.100)

in the previous description of M-curves gives all hyperelliptic M-curves. All
the considerations simplify in this case (see [BBE+94] for details).

In particular the fundamental domain Π of the Schottky group can be
chosen symmetric with respect to the involution πz = −z. The boundary
circles Cn, C

′
n can be chosen to be the isometric circles of the corresponding

hyperbolic generators. The center cn and the radius rn of Cn are as follows:

cn = An
1 + μn
1− μn

, rn = 2An
√
μn

1− μn
.

The involutions τz = z̄ and τ̃ = τπz = −z̄ are anti-holomorphic, and τ
is the one with N + 1 real ovals. The Schottky group G is the subgroup of
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index 2 of the group generated by the inversions in in the circles Cn and τ̃ ,
in particular σn = τ̃ in, σ−1

n = inτ̃ . The intersection points of the circles Cn
with the real axis

z±n = An
1±√μn
1∓√μn

as well as z = 0 and z =∞ are the fix points of the hyperelliptic involution π.
The reduction (1.100) simplifies the period matrix,

Bnm =
∑

σ∈Gm\G/Gn
log

(
Am − σ(An)
Am − σ(−An)

)2

,

Bnn = logμn +
∑

σ∈Gn\G/Gn
log

(
An − σ(An)
An − σ(−An)

)2

and the description of the Schottky set,

0 < A1 < . . . < AN , 0 <
√
μn < 1 , n = 1, . . . , N ,

(
1−√μn
1−√μn

)(
1−√μn+1

1−√μn+1

)
>

An
An+1

, n = 1, . . . , N − 1 .

A meromorphic function λ : R→ Ĉ with double pole (at z =∞) defining
a two-sheeted covering (see Sect. 1.5.5) is given by the Poincaré theta series

λ(z) =
∑

σ∈G
((σz)2 − (σ0)2) .

The corresponding hyperelliptic curve is

μ2 = λ

N∏

n=1

(λ− λ(z−n ))(λ − λ(z+
n )) .

Acknowledgment

This work is partially supported by the DFG Research Unit ‘Polyhedral
Surfaces’.

References

[Aka67] Akaza, T.: Singular sets of some Kleinian groups. II. Nagoya Math. J.
29, 149–162 (1967)

[AS60] Ahlfors, L., Sario, L.: Riemann surfaces. Princeton mathematical series,
vol. 26, xi+382 pp. Princeton University Press, Princeton, N.J. (1960)



1 Riemann Surfaces 63

[Ati71] Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. École Norm.
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2.1 Introduction

In this chapter, we present an overview of different algorithms for comput-
ing with compact connected Riemann surfaces, obtained from desingularized
and compactified plane algebraic curves. As mentioned in Chap. 1 [Bob11],
all compact connected Riemann surfaces may be represented this way. The
Maple package “algcurves”, largely developed by the authors and Mark van
Hoeij contains implementations of these algorithms. A few recent additions
to the “algcurves” package are not due to the authors or Mark van Hoeij.
The algorithm behind those commands are not discussed here as they have
no bearing on anything associated with Riemann surfaces.

Because some of the algorithms presented here are algebraic in nature,
they rely on exact arithmetic, which implies that the coefficients of the alge-
braic curves are required to have an exact representation. Most importantly,
floating point numbers are not allowed as coefficients for these algorithms.
The reason for not allowing floating point numbers is that the geometry of
the Riemann surface is highly dependent on the accuracy of the coefficients
in its algebraic curve representation. If an algebraic curve has singularities,
then, almost surely, the nature of these singularities will be affected by
inaccuracies in the coefficients of the curve. This may affect the algebraic
algorithms discussed below, such as those for the calculation of the genus,
homology and holomorphic 1-forms on the Riemann surface. Users of the
“algcurves” package can consider floating point coefficients, but these need to
be converted to a different form (rational, for instance), before the programs
will accept the input. Furthermore, since we are using algebraic curves to rep-
resent Riemann surfaces, the algebraic curves are always considered over the

A.I. Bobenko and C. Klein (eds.), Computational Approach to Riemann Surfaces, 67
Lecture Notes in Mathematics 2013, DOI 10.1007/978-3-642-17413-1 2,
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complex numbers. Throughout this chapter, “calculation” is used when exact
results are obtained, whereas “computation” is used for numerical results.

Apart from the restriction to an exact representation, all of the algorithms
discussed in detail in this chapter are general in the sense that they apply to all
compact connected Riemann surfaces. An appendix is presented discussing the
use of a few algorithms that apply to a restricted class of algebraic curves and
Riemann surfaces, such as elliptic and hyperelliptic surfaces. This appendix
contains many examples, but no detailed explanation of the specifics of the
algorithms.

All of the descriptions of the algorithms of the main body of this chapter
are preceded by the next section which outlines the connection between plane
algebraic curves and Riemann surfaces with a level of detail appropriate
for what follows. The work reviewed here may be found in [DvH01, DP07a,
Pat07,vH95,vH94]. The examples of the implementations use commands avail-
able in Maple 11 (Released Spring 2007). A few commands are used that are
not available in Maple 11 yet. They are identified as such in the text.

2.2 Relationship Between Plane Algebraic Curves
and Riemann Surfaces

In this section, some required background from the theory of Riemann surfaces
is introduced. More details can be found in such standard references as [FK92,
Spr57]. Excellent places to read up on Riemann surfaces and how they relate
to plane algebraic curves that do not require an extensive background are the
monographs by Brieskorn and Knörrer [BK86] and Griffiths [Gri89].

Consider a plane algebraic curve, defined over the complex numbers C, i.e.,
consider the subset of C

2 consisting of all points (x, y) satisfying a polynomial
relation in two variables x and y with complex coefficients:

f(x, y) = an(x)yn + an−1(x)yn−1 + . . . + a1(x)y + a0(x) = 0 . (2.1)

Here aj(x), j = 0, . . . , n are polynomials in x. Write aj(x) =
∑
i aijx

i, where
the coefficients aij are complex numbers. Assuming an(x) does not vanish
identically, n is the degree of f(x, y) considered as a polynomial in y. We
only consider irreducible algebraic curves, so f(x, y) cannot be written as the
product of two non-constant polynomials with complex coefficients.

Let d denote the degree of f(x, y) as a polynomial in x and y, i.e., d is the
largest i + j for which the coefficient aij of xiyj in f(x, y) is non-zero. The
behavior at infinity for both x and y is examined by homogenizing f(x, y) = 0
by letting

x = X/Z , y = Y/Z , (2.2)

and investigating

F (X,Y, Z) = Zdf(X/Z, Y/Z) = 0 . (2.3)
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Here F (X,Y, Z) is a homogeneous polynomial equation of degree d. Finite
points (x, y) ∈ C

2 on the algebraic curve correspond to triples (X : Y : Z)
with Z 	= 0. Since for these points (X : Y : Z) = (X/Z : Y/Z : 1), we
may equate Z = 1, so finite points can be denoted unambiguously by (x, y)
instead of (X/Z, Y/Z). Points at infinity correspond to triples (X : Y : Z),
with Z = 0. Hence, at a point at infinity, at least one of the two coordinate
functions x or y is infinite. Because F (X,Y, 0) is a homogeneous polynomial
of degree d, there are at most d points at infinity.

The algebraic curve can have singular points. An algorithm to efficiently
calculate the singular points of an algebraic curve is discussed in Sect. 2.5.
Here we briefly discuss singularities as they need to be dealt with in order
to construct the Riemann surface from an algebraic curve. Finite singular
points on the algebraic curve specified by f(x, y) = 0 satisfy f(x, y) = 0 =
∂xf(x, y) = ∂yf(x, y). Points at infinity can also be singular. Singular points at
infinity satisfy ∂XF (X,Y, Z) = ∂Y F (X,Y, Z) = ∂ZF (X,Y, Z) = 0 (then also
F (X,Y, Z) = 0, by Euler’s theorem for homogeneous functions). Desingular-
izing the algebraic curve results in a Riemann surface, i.e., a one-dimensional
complex-analytic manifold (so it is two-dimensional over the real numbers; it
is a surface). There are various ways of desingularizing algebraic curves. Our
methods use Puiseux series, as detailed in Sect. 2.3. Each nonsingular point
on the algebraic curve corresponds to one place1 on the Riemann surface,
whereas a singular point on the algebraic curve can correspond to multiple
places on the Riemann surface.

In what follows, Γ is used to denote the Riemann surface obtained by
desingularizing and compactifying (by adding the places at infinity) the al-
gebraic curve represented by f(x, y) = 0. All Riemann surfaces obtained this
way are connected (because f(x, y) is irreducible) and compact (because the
points at infinity are included). Conversely, as stated in Chap. 1 it is known
that every compact connected Riemann surface can be obtained as described
above [BBE+94, Spr57]. From here on out, all Riemann surfaces considered
are understood to be connected and compact. We use Γ̂ to denote the com-
pactified, not desingularized algebraic curve.

2.3 Puiseux Series

Many of the algorithms presented in the next sections make use of local co-
ordinates on an algebraic curve. For our algorithms, this local behavior is un-
derstood using Puiseux expansions. These expansions allow us to distinguish
between regular points, branch points and singular points. Further, in addition
to determine the nature of singular points, Puiseux expansions characterize

1 We use the term “point” to denote a value in the complex x-plane. On the other
hand, “place” is used to denote a location on the Riemann surface Γ , or, unam-
biguously, a location on the desingularized plane algebraic curve.
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the topology of an algebraic curve near branch points. One way to look at this
is that Puiseux series are our way to desingularize the algebraic curves we are
working with. There are other ways of doing so, all with their advantages and
disadvantages. A popular alternative is the use of quadratic transformations
to “lift” the singular plane algebraic curve to a higher-dimensional nonsingular
curve [Abh90].

Newton’s Theorem, which we summarize below, completely describes the
local behavior of a plane algebraic curve. Over the neighborhoods of a regular
point x = α the coordinate function y is given locally as a series in ascending
powers of x−α [Bli66]. Near a branch point however, y is given necessarily by
a series with ascending fractional powers in x − α. Such series are known as
Puiseux series. It is common to choose a local parameter, say t, such that x
and y are written as Laurent series in that local parameter.2 That is, if α is a
branch point of order r, then tr = x− α, and y is written as a Laurent series
in t. A pair (x(t), y(t)) is referred to as a Puiseux expansion as it is equivalent
to a Puiseux series.

2.3.1 Newton’s Theorem

In a lift of the neighborhood of x = α, the n y-roots of (2.1) are determined
by a number ≤ n of pairs of expansions of the form

Pj =
(
x = α + trj , y = βjt

sj + β′
jt
s′j + · · ·

)
(2.4)

with rj , sj , s
′
j , . . . ∈ Z, t ∈ C, α, βj , β′

j , . . . ∈ C. Here |rj | is the number (the
branching number) of y-roots that merge at place Pj . If |rj | > 1 for one of
the Pj , then α is a branch point and Pj is a branch place. For |t| > 0, a place
Pj represents |rj | distinct y-values and

∑
j |rj | = n . The coefficients β, β′, . . .

are all non zero; only a finite number of the integer exponents sj < s′j < . . .
are negative; and |rj | is coprime with at least one of the sj , s

′
j , . . .. For places

over x =∞, one has α = 0 and rj < 0, i.e., x = 1/t−rj . A Puiseux expansion
evaluated at t = 0 is called a center.

The algorithm to compute Puiseux expansions implemented in the
“algcurves” package is essentially that described by Newton in letters to
Oldenburg and Leibniz [BK86]. A treatment of the algorithm with much de-
tail may be found, for instance, in [Wal62]. The paper by van Hoeij [vH94]
discusses a modern implementation of the algorithm, most importantly pro-
viding a method allowing one to determine how many terms of the expansions
are required to guarantee distinct branches are recognized as such.

2 For finite points, only Taylor series in the local parameter are required. Laurent
series with a finite number of singular terms are necessary to encompass points
at infinity.
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Fig. 2.1. The real graph of the Ramphoid cusp curve

Example. Consider the curve

f(x, y) = (x2 − x + 1)y2 − 2x2y + x4 = 0 . (2.5)

Note that for this example an(x) = x2−x+1 is not constant, a fact complicat-
ing the calculation of Puiseux expansions [Bli66]. Nevertheless, such computa-
tions are still possible. The curve (2.5) is known as a “ramphoid cusp” because
of the structure of the real part of the graph at the origin [Wal62], as shown
in Fig. 2.1. The graph was produced using the command plot real curve of
the “algcurves” package. We compute the local structure of this curve at two
different x-values. First we compute the expansions over x = 0, which is not
a zero of an, and second, the expansions over one of the roots of an(x) = 0.

The command puiseux used below computes the y-expansions of
f(x, y) = 0 over x = 0. To give zero as the fourth argument of this com-
mand implies that the procedure calculates as many terms as are necessary
to distinguish separate expansions.

># read in the package
>with(algcurves):
># define the algebraic curve
>f:=x^4+x^2*y^2-2*x^2*y-y^2*x+y^2:
># compute the Puiseux expansions over x=0
>puiseux(f,x=0,y,0);

{
x2 + x5/2

}
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Note that x = 0 is a branch point by virtue of the fractional power in the
second term. This one expansion represents two distinct places for |x| > 0. To
recover both roots near x = 0 one ‘conjugates’ the series using the r-th roots
of unity, where r is the greatest common denominator of the exponents of the
series. Thus, one makes the r substitutions x �→ e2πij/rx, j = 1, . . . , r. In this
case, the r = 2 different y-roots are

y =
{
x2 + x5/2 + · · · , x2 − x5/2 + · · ·

}
.

If, instead of 0, the fourth argument is specified to be a positive integer
value M , then the expansions are computed up to xM . For example, if M = 4,
then the x7/2 term is included, but terms of order x4 and higher are not.

>puiseux(f,x=0,y,4);

{
x2 + x5/2 + x3 +

1
2
x7/2

}

>puiseux(f,x=0,y,5);

{
x2 + x5/2 + x3 +

1
2
x7/2 − 5

8
x9/2

}

Including a fifth argument t in the call to puiseux changes the output. In this
case the output is a pair of expansions in the local parameter t.

>f:=x^4+x^2*y^2-2*x^2*y-y^2*x+y^2:
># compute the Puiseux expansions using local coordinate t
>puiseux(f,x=0,y,0,t);

{[x = t2, y = t4 + t5]}

2.4 Integral Basis

We start by explaining the concept of an integral basis. Integral bases are
used in all aspects of algebra, but they have become particularly important
with the rise of computer algebra systems, as their construction often allows
convenient calculation of many other derived quantities. An example of this
in our chapter is the use of the integral basis for the calculation of the holo-
morphic 1-forms on a Riemann surface, see Sect. 2.9. Another example is their
use in the algorithmic integration in finite terms of algebraic functions.

Consider the coordinate functions x and y on the Riemann surface Γ .
These two functions are algebraically dependent, by the defining equation
f(x, y) = 0. Denote by A(Γ ) the part of the Riemann surface where both x
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and y are finite. Also, let OA(Γ ) be the set of all meromorphic functions on
the Riemann surface that have no poles in A(Γ ). For example, OA(Γ ) contains
C[x, y], the set of all polynomials in x and y: since in A(Γ ) both x and y
are finite, any polynomial of x and y results in a finite value as well. If the
algebraic curve has no finite singularities, then every meromorphic function on
the Riemann surface without poles in A(Γ ) can be represented as a polynomial
in x and y, hence OA(Γ ) = C[x, y] if the curve has no finite singularities.
In general, OA(Γ ) is the integral closure of C[x, y] in the meromorphic functions
on A: it is the set of all meromorphic functions g on A(Γ ) which satisfy a monic
polynomial equation

gm + γm−1(x, y)gm−1 + . . . + γ1(x, y)g + γ0(x, y) = 0 , (2.6)

for a certain positive integer m and coefficients γi(x, y), i = 0, 1, . . . ,m−1 from
C[x, y]. Note that for m = 1 we get C[x, y] ⊂ OA(Γ ), so all polynomials in x
and y are in OA(Γ ). An integral basis {β0, . . . , βn−1} of OA(Γ ) can be computed
such that every element of OA(Γ ) can be written as a linear combination of
β0, . . . , βn−1 with coefficients that are polynomial in x only.

An efficient method to calculate an integral basis of OA(Γ ), using Puiseux
expansions, is given in [vH94]. The algorithm is as follows. We put β0 = 1.
To construct βk, k = 1, . . . , n− 1, we repeat the following steps:

1. Make the guess βk = yk. Actually, the algorithm in [vH94] uses the guess
βk = yβk−1, which is more efficient. The examples below are easier to
work out with βk = yk. The results, of course, are equivalent.

2. Define V to be the set of all elements v,

v =
k∑

j=0

wj(x)yj , (2.7)

where the wj(x) are rational functions of x, such that v is regular on A(Γ ),
modulo the linear combinations of βj, j = 1, . . . , k, where the coefficients
of the linear combinations are polynomial in x.

3. If V is not empty, we choose an element v̂ of V of the form

v̂ =

∑k
j=0 ŵj(x)βj

k(x)
. (2.8)

Here ŵj(x), j = 1, . . . , k and k(x) are polynomial in x. Also, ŵk(x) ≡ 1.
4. We replace our guess for βk with v̂, and repeat from step 2.

It is shown in [vH94] that the set V becomes smaller at every step, thus the
algorithm terminates. We now briefly discuss this method using two examples.

Example. Consider the algebraic curve defined by

f(x, y) = y3 − x7 + 2x3y = 0 . (2.9)
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This curve has one finite singular point at (x, y) = (0, 0). The Puiseux expan-
sions at this point are

P1 : (x = t, y = t4/2 + . . .) , P2 : (x = −2t2, y = 4t3 + . . .). (2.10)

• We start with β0 = 1.
• Our first guess is β1 = y. With this guess, the set V consists of all elements

v = w0(x)+w1(x)y that do not contain any polynomial part that is of first
degree in y. Since we are interested in the behavior at the origin x = y = 0,
we can represent v as

v =
w0,−1

x
+

w0,−2

x2
+ . . . +

w0,−p
xp

+
(w1,−1

x
+

w1,−2

x2
+ . . . +

w1,−q
xq

)
y ,

(2.11)

for some positive integers p and q.
Imposing the regularity of this expression at the singular point requires
the vanishing of w0,k, k = −1,−2, . . . , and of w1,k, k 	= −1. Thus v has to
be proportional to y/x. This leads us to our second guess for β1, namely
β1 = y/x. We now repeat the above. With this new guess we find that v
cannot have a polynomial part in x, nor a part that is linear in y and at
worst has a first-order pole at x = 0. As a result, the set V is empty, and
we conclude that β1 = y/x.

• Our first guess for β2 is β2 = y2 and the set V consists of all elements
v = w0(x) +w1(x)y +w2(x)y2, modulo polynomials in x, multiplied by 1,
y/x or y2. Again using a Laurent series approach and imposing regularity
at the places P1 and P2 we find that v is of the form v = w2,−1y

2/x +
w2,−2y

2/x2 + w2,−3y
2/x3. Several choices are possible. If we make the

worst choice (i.e., the choice leading to the longest iteration) and make
our new guess β2 = y2/x, we repeat this loop, only to conclude that the
new set V contains elements of the form w2,−2y

2/x2 + w2,−3y
2/x3, a few

more iterations lead us to our final guess: β2 = y2/x3. With this guess we
determine the set V to be empty.

This concludes the construction of the integral basis for this example. As a
last check, we verify explicitly that y/x and y2/x3 satisfy monic polynomial
equations with coefficients that are polynomials in x and y. Indeed:

( y

x

)3

+ 2x
(y

x

)
− x4 = 0 ,

(
y2

x3

)2

+ 2
(
y2

x3

)
− xy = 0 . (2.12)

The command integral basis calculates this integral basis immediately:

># load the algcurves package
>with(algcurves):
># define the algebraic curve
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Fig. 2.2. The real graph of the Ampersand curve

>f:=y^3-x^7+2*x^3*y:
># calculate an integral basis for f(x,y)=0
>integral_basis(f,x,y);

[
1,

y

x
,
y2

x3

]

Example. Consider the algebraic curve defined by

f(x, y) = (y2 − x2)(x− 1)(2x− 3)− 4(x2 + y2 − 2x)2 = 0 . (2.13)

This curve is known as the Ampersand curve. Its graph for (x, y) ∈ R
2 is shown

in Fig. 2.2. The figure was produced using the plot real curve command
of the “algcurves” package. The curve has three finite singular points (all
double points): at (x, y) = (0, 0), (1, 1) and (1,−1). The Puiseux expansions
specifying the places at these points are:

(0, 0) :
{
P1 : (x = t, y = t

√
19/3 + . . .) ,

P2 : (x = t, y = −t
√

19/3 + . . .) ,
(2.14)

(1, 1) :
{
P3 : (x = 1 + t, y = 1 + t(

√
33− 1)/16 + . . .) ,

P4 : (x = 1 + t, y = 1− t(
√

33 + 1)/16 + . . .) ,
(2.15)

(1,−1) :
{
P5 : (x = 1 + t, y = −1 + t(

√
33 + 1)/16 + . . .) ,

P6 : (x = 1 + t, y = −1− t(
√

33− 1)/16 + . . .) .
(2.16)
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The other two places over x = 0 are regular; they are needed in the following
calculation of the integral basis of (2.13).

• We start with β0 = 1.
• Our first guess for β1 is β1 = yβ0 = y. With this guess, the set V consists

of all elements v = w0(x) + w1(x)y without any polynomial parts of first
degree in y. Since we are interested in the behavior at the origin and at
the singular points with x = 1, we represent v using a partial fraction
decomposition as

v =
v0,−1

x
+

v0,−2

x2
+ . . . +

w0,−1

x− 1
+

w0,−2

(x− 1)2
+ . . . +

(
v1,−1

x
+

v1,−2

x2
+ . . . +

w1,−1

x− 1
+

w1,−2

(x− 1)2
+ . . .

)
y . (2.17)

Here, and in the rest of this example, the dots denote that more terms may
appear, but only a finite number. Imposing the regularity of this expression
at the two regular places with x = 0 enforces vj,k = 0, for all choices of j
and k. Next, imposing the regularity of the remaining expression at P3 to
P6 yields too many conditions, resulting in all coefficients being equated
to zero. Thus β1 = y.

• Our first guess for β2 is β2 = y2 and the set V consists of all elements
v = w0(x) +w1(x)y +w2(x)y2, modulo polynomials in x, multiplied by 1,
y or y2. Again using a partial fraction approach we write

v =
v0,−1

x
+

v0,−2

x2
+ . . . +

w0,−1

x − 1
+

w0,−2

(x− 1)2
+ . . . +

(
v1,−1

x
+

v1,−2

x2
+ . . . +

w1,−1

x − 1
+

w1,−2

(x− 1)2
+ . . .

)
y +

(
v2,−1

x
+

v2,−2

x2
+ . . . +

w2,−1

x − 1
+

w2,−2

(x− 1)2
+ . . .

)
y2 . (2.18)

We first impose the regularity conditions originating from the singular and
regular points corresponding to x = 0. These only affect the coefficients
vj,k. From the Puiseux series P1 and P2, it follows immediately that vj,k =
0 for k < −2. The remaining vj,k all vanish to ensure the regularity of v at
the regular points over x = 0. Thus, at this stage the most general element
of V is of the form

v =
w0,−1

x− 1
+

w0,−2

(x− 1)2
+ . . . +

(
w1,−1

x− 1
+

w1,−2

(x− 1)2
+ . . .

)
y +

(
w2,−1

x − 1
+

w2,−2

(x− 1)2
+ . . .

)
y2 . (2.19)
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Regularity of v at the places P3, . . . , P6 implies that all denominators in
(2.19) are powers of t. Using the zeroth order Puiseux expansions at these
places, we find that v reduces to

v =
y2 − 1
x− 1

(
w2,−1 +

w2,−2

x− 1
+

w2,−3

(x− 1)2
+ . . .

)
. (2.20)

Lastly, all coefficients w2,k vanish for k 	= −1 as there are no numerators
left to cancel their singularity. Thus,

v = w2,−1
y2 − 1
x− 1

, (2.21)

and we are led to choose β2 = (y2 − 1)/(x − 1). With this choice, we
determine the new set V to be empty. Thus we have determined the third
element of the integral basis.

• To find the final element of the integral basis for (2.13), we initially guess
β3 = y3. A similar to the above, but lengthier calculation results in

v = v3,−1
y(y2 − 3/4)

x
+

y2 − 1
x− 1

(w3,−1y + w2,−1) . (2.22)

To choose a new representative for β3, we impose (2.8), which leads to the
choice

β3 =
4y3 − xy − 3

4x(x − 1)
. (2.23)

With this choice the new set V is found to be empty, thus we have finished
the determination of the integral basis of (2.13).

The command integral basis agrees with our calculation of the integral
basis:

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=(y^2-x^2)*(x-1)*(2*x-3)-4*(x^2+y^2-2*x)^2:
># calculate an integral basis for f(x,y)=0
>integral_basis(f,x,y);

[
1, y,

−1 + y2

−1 + x
,

y3

(−1 + x)x
− y(x + 3)

4(−1 + x)x

]

A few simple algebraic manipulations confirm this integral basis to be identical
to the one constructed for this example above.



78 B. Deconinck and M.S. Patterson

2.5 Singularities of a Plane Algebraic Curve

The singularities of a plane algebraic curve are those points that prevent us
from identifying the compactified algebraic curve with a Riemann surface.
In order to obtain a Riemann surface from a plane algebraic curve, these
singularities need to be resolved. There are various ways of doing this. A
popular way (e.g. [Abh90]) is the use of quadratic transformations, to essen-
tially unravel the behavior at the singular points by adding extra dimensions.
Our approach is different. As discussed in Sect. 2.3, we employ Puiseux series.
These do not allow us to unravel the behavior at the singular points, but they
do allow us to determine how to pass through singular points. They determine
a coordinate chart of the singular point, with which a coordinate atlas may
be built, leading to the manifold structure required for a Riemann surface.

2.5.1 Computing the Singularities

Let us consider finite singularities first. We will consider singularities at infin-
ity at the end of this section. Let R(x) be the resultant of f(x, y) and ∂yf(x, y)
[Gri89]. In other words,

R(x) = (2.24)

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 . . . a1 a0 0 . . . 0
0 an an−1 . . . a1 a0 . . . 0
...

. . . . . .
...

0 . . . an an−1 . . . a1 a0 0
0 . . . 0 an an−1 . . . a1 a0

nan (n− 1)an−1 . . . a1 0 . . . 0 0
0 nan (n− 1)an−1 . . . a1 0 . . . 0
...

. . . . . .
...

0 . . . 0 nan (n− 1)an−1 . . . a1 0
0 0 . . . 0 nan (n− 1)an−1 . . . a1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here all the coefficients ak, k = 0, . . . , n, are as in (2.1), thus they are functions
of x. The zeros of R(x) are the x-coordinates of the places that satisfy

f(x, y) = 0 , ∂yf(x, y) = 0 . (2.25)

Since singularities correspond to more than one place on the Riemann surface,
we seek the roots of R(x) = 0 that have multiplicity 2 or higher. Let S =
(x1, . . . , xs) be the list of these roots. For each xk ∈ S, we solve

f(xk, y) = 0 . (2.26)

Denote the solutions of this equation by (yk1, . . . , ykn) (some entries may be
repeated). This results in a number of places (xk, ykj), k = 1, . . . , s, j =
1, . . . , n. Those places that satisfy
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∂xf(xk, ykj) = 0 , k = 1, . . . , s, j = 1, . . . , n, (2.27)

are singular points of the algebraic curve specified by (2.1). Using homoge-
neous coordinates, these points are denoted (xk, ykj , 1).

For singular points at infinity, we proceed as follows. The points at infinity
are found by solving the homogeneous polynomial equation of degree d (see
(2.3))

F (X,Y, 0) = 0 = XdF (1, Y/X, 0) = Y dF (X/Y, 1, 0) . (2.28)

This results in d points, possibly repeated, written in homogeneous coordi-
nates as (Xj , Yj , 0), j = 1, . . . , d. Among these points those that satisfy

FX(X,Y, Z) = FY (X,Y, Z) = FZ(X,Y, Z) = 0 , (2.29)

are singular points. Incorporating the newly found singular points at infinity,
we denote the set of all singular points as

S = {P1, . . . , PS} , (2.30)

where S denotes the number of distinct singularities of the algebraic curve.
Each singularity on an algebraic curve is categorized by three numbers: m,

δ, and R: its multiplicity, its delta invariant and its number of local branches,
respectively. In rough terms, for a point P on the algebraic curve, m is the
number of tangent lines at P (counting a tangent line as many times as its
multiplicity), δ is the number of ordinary double points that coalesce to form
the singularity at P , and R is the number of local branches that emanate from
P . A common approach [BK86,Abh90,Wal62] is to compute these numbers
by employing successive quadratic transformations (x, y) �→ (x, yx) to “blow
up” or resolve singularities into “infinitely near” but distinguishable curve
components. Instead, the algorithms of the “algcurves” package use Puiseux
expansions to compute m, δ and R.

Note that triples (X,Y, Z) corresponding to places at infinity may be
brought to the origin by an appropriate transformation [Abh90], so it suf-
fices to discuss the computation of m, δ and R for affine triples (α, β, 1) which
are well defined by the pair (α, β). Further, using x �→ x− α, all affine places
corresponding to (α, β) are brought to places (0, β) over x = 0. In the descrip-
tions below, we assume such transformations have been executed, to simplify
the discussion.

2.5.2 Branching Number of a Singularity

The number R of local branches at (0, β) is determined by computing all the
Puiseux expansions over x = 0, and counting how many of them have y-value
β at the center. In other words, R =

∑
j |rj |, where the sum runs over all

places at the singular point.
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2.5.3 Multiplicity of a Singularity

The multiplicity of a place P = (0, β) on the plane algebraic curve defined
by f(x, y) = 0 is the number of (complex) tangent lines that meet there once
multiple tangencies are properly counted [Gri89].

Over a regular point x = α there are n distinct y-values, each yielding
a distinct pair (α, βj). Thus the multiplicity of a pair (α, βj) over a regular
point α is necessarily one. Over a singular point, sets of the n branches of the
algebraic cover coalesce at least one of the βj . Suppose that some number, say
�, of branches all coalesce at (α = 0, β). Then the multiplicity of (α = 0, β)
(and thus that of the homogeneous triple (α = 0, β, 1) is the sum of the
multiplicities of each of the � branches. The multiplicity of each branch is
calculated from the Puiseux expansions whose centers are (α = 0, β): define
the lines L(x, y) = a(x − α) + b(y − β) = 0, with a, b ∈ C. To properly count
the tangencies at place P = (tr, β + β′ts + · · · ) with center (α = 0, β), we
calculate the valuation of L(tr, β′ts + · · · ) (i.e., the exponent of the lowest
power of t in L(tr, β′ts + · · · )) and minizime it over all a and b [Wal62].

One may see that the multiplicity of P = (tr, β+β′ts+· · · ) is the minimum
of r and s. Indeed, we calculate the minimum intersection multiplicity of
expansion P with lines through (0, β) given by (a) x = 0 and (b) y = β. (a)
First, any line of the form ax = 0 (or, L with a 	= 0, b = 0) evaluated at
Pi results in atr = 0. Thus the valuation of L(x, y) = 0 is r for any value of
a 	= 0. (b) Next, any line for which b 	= 0, when intersected with P , is given
by L = atr + b(β + β′ts + · · · − β) = atr + b(β′ts + · · · ) = 0. If r ≤ s, then the
valuation is r. Otherwise, the valuation is s.

2.5.4 Delta Invariant of a Singularity

A singular point is said to be an ordinary singular point if all the branches
at this point intersect transversely (i.e., all tangent lines at the point to these
branches are distinct). The delta invariant δ of an ordinary m-tuple center
(α, β) is the number of transverse intersections that occur there. For instance,
4 lines crossing transversely at (α, β) may be “perturbed” slightly to create a
situation with 4(4 − 1)/2 intersections, each a transverse intersection of two
lines. The delta invariant of any ordinary m-tuple singularity (α, β) is the
number δ = m(m− 1)/2, where m is the multiplicity of the center (α, β).

Suppose the branches do not cross transversely at (α, β), in other words
(α, β) is not an ordinary m-tuple center. Then δ is instead defined to be the
number of linear conditions imposed by the Puiseux expansions with center
(α, β) on the construction of the integral basis of Sect. 2.4, but without incor-
porating the singularities not at (α, β). This definition encompasses the one
above, which only holds for ordinary m-tuple centers.

The “algcurves” command singularities uses a formula which allows
for the computation of the delta invariant directly in terms of the quantities
associated with the Puiseux series at the singular point (see, for instance,
[Kir92]).
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To explain the formula used to compute the delta invariant δ of the center
(0, β), it is necessary to introduce the intersection index IntP of Puiseux ex-
pansion P . Suppose all the places with center (0, β) are given by P1, . . . , Pm,
and let rj be the branching number of Pj . Further, suppose ŷj(x) is a series in
powers of the local coordinate x1/rj , each with constant term β. Recall that
upon ‘conjugation’ using the rj-th roots of unity, ŷj accounts for rj y-roots of
f(0, y) = 0. Thus, near x = 0, f may be factored as

f = Πm
j=1Π

rj
k=1

(
y − ŷj(e2iπk/rjx)

)
∗Πn

j=m+1(y − ŷj(x)) , (2.31)

where ŷj(0) 	= β for m+1 < j ≤ n. Rewriting (2.31) more simply as a product
of n factors, without regard to the places from which those factors arose, we
have

f = Πn
k=1(y − ỹk(x)) . (2.32)

The intersection index IntPj at place Pj is then given by

IntPj =
n∑

k=1, k �=j
ordx(ŷj(x) − ỹk(x)) , (2.33)

where ordx(g(x)) denotes the lowest, possibly fractional, exponent of x ap-
pearing in g(x). The delta invariant of the center (0, β) is then given by

δ(0,β) =
m∑

j=1

rjIntPj − rj + 1
2

. (2.34)

Example. Recall from Sect. 2.3 that the ramphoid cusp given by f = (x2 −
x + 1)y2 − 2x2y + x4 = 0 is described near x = 0 by the single Puiseux series
y = x2 + x5/2 + · · · . To recover both roots of f(0, y) = 0, we conjugate over
the square roots of unity. Thus, near x = 0, f may be factored as

f = (y − x2 − x5/2 + · · · )(y − x2 + x5/2 + · · · ) . (2.35)

IntP is the lowest exponent in x appearing in the expression obtained by
substituting y = x2 + x5/2 + · · · into the right-hand factor in (2.35):

IntP = ordx(x2 + x5/2 + · · · − x2 + x5/2 + · · · ) = 5/2 .

Noting there is only one place over x = 0, and the branching number there is
2, the delta invariant of the center (0, 0) is, by (2.34), ((5/2)2− 2 + 1)/2 = 2.

Example. Consider the plane algebraic curve defined by f=y3−x7+ 2x3y=0.
The Puiseux expansions over x = 0 are

ȳ1 = x4/2 + · · · , ȳ2 = −i
√

2x3/2 − x4/4 + · · · ,
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thus, near x = 0, f may be factored as

(
y − x4/2 + · · ·

) (
y + i

√
2x3/2 + 2x4 + · · ·

)(
y − i

√
2x3/2 + 2x4 + · · ·

)
.

(2.36)

First we calculate the contribution to (2.34) from ȳ1. The branching number
in this case is r1 = 1. The quantity IntP1 is the order in x of

(
x4/2 + · · ·+ i

√
2x3/2 + 2x4 + · · ·

)(
x4/2 + · · · − i

√
2x3/2 + 2x4 + · · ·

)
,

which is 3/2+3/2 = 3. Therefore the contribution to δ(0,0) from ȳ1 is ((1)(3)−
1 + 1)/2 = 3/2. Next, we calculate the contribution from ŷ2. The branching
number in this case is 2, and Int2 is the lowest exponent in x in the result of
substituting y = ȳ2 into the first and third factors of (2.36):

IntP2 = ordx
((
−i
√

2x3/2 − x4/4 + · · · − x4/2 + · · ·
)
∗ · · ·

· · · ∗
(
−i
√

2x3/2 − x4/4 + · · ·+−i
√

2x3/2 + 2x4 − · · ·
))

= 3

Thus the contribution due to ȳ2 is ((2)(3) − 2 + 1)/2 = 5/2, and δ(0,0) =
3/2 + 5/2 = 4.

Next we present a few examples of the use of the singularities command
of the “algcurves” package to calculate with singularities of plane algebraic
curves. We restrict the coefficients of the polynomials in the examples to be
integers to keep the output relatively simple. The Maple implementation is in
no way restricted to such curves.

The output of the command singularities is a set of lists, one list for
each singularity. Each list consists of the homogeneous coordinates represen-
tation of the singularity P , followed by, in order, the multiplicity m, the delta
invariant δ and the number of local branches R at P . The procedure computes
all singularities up to conjugation. Thus if a singularity [RootOf( Z2−2), 1, 1]
is present in the output, and if RootOf( Z2 − 2) does not appear as a coef-
ficient in the curve, then [−RootOf( Z2 − 2), 1, 1] is a singular point as well
but is suppressed in the output. Here we have adopted the Maple notation
RootOf( Z2 − 2) to denote the roots of the equation Z2 − 2 = 0. In other
words, RootOf( Z2 − 2) is a placeholder for both

√
2 and −

√
2.

Example. The curve f = y2 + x3 − x2 = 0 has a node, that is an ordinary
double point, at the origin and a branch point at x = 1. Figure 2.3 shows
the real graph of f(x, y) = 0. In this example we compute m, δ and R for
the singularity at (0, 0) (or in homogeneous coordinates, (0 : 0 : 1)). First, we
calculate the Puiseux expansions over x = 0.
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Fig. 2.3. The real part of the graph of y2 +x3−x2 = 0 displays an ordinary double
point, also known as a node, at the origin x = y = 0. The figure was produced using
the plot real curve command

># read in the package
>with(algcurves):
># define the algebraic curve
>f:=y^2+x^3-x^2:
># compute the Puiseux expansions over x=0
>puiseux(f,x=0,y,0,t);

{[x = t, y = −t], [x = t, y = t]}

There are two expansions over x = 0, both with center (0, 0): therefore R = 2.
Consider the first expansion. The exponent of t for the x-series is one, as is
the lowest exponent for the y-series. The minimum of these two exponents is
one, thus the multiplicity of the first expansion is one. A similar argument
with the second expansion gives that its multiplicity is also one, resulting
in a total multiplicity for the singularity of m = 2. The two branches cross
transversely, thus (0, 0) is an ordinary double point with delta invariant given
by δ = 2(2− 1)/2 = 1. We confirm this using the command singularities.

>singularities(f,x,y);

{[[0, 0, 1], 2, 1, 2]}

Thus the origin is a singular point with multiplicity m = 2, delta invariant
δ = 1 and branching number R = 2.
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Fig. 2.4. The real part of the graph of (x2 + y2)3 + 3x2y − y3 = 0 shows the
presence of a singularity at the origin which is an ordinary triple point. The figure
was produced using the plot real curve command

Example. The real graph of the algebraic curve defined by

f = y6 + 3x2y4 − y3 + 3x4y2 + 3x2y + x6

= (x2 + y2)3 + 3x2y − y3 (2.37)

is a trefoil whose lobes meet at the origin, as shown in Fig. 2.4. As before, we
compute the Puiseux series over x = 0 and, using these expansions, explain
the output of the command singularities.

># define the algebraic curve
>f:=(x^2 +y^2)^3 + 3x^2y - y^3:
># compute the Puiseux expansions over x=0
>puiseux(f,x=0,y,0,t);

{[x = t, y = RootOf( Z2 + Z + 1)], [x = t, y = tRootOf( Z2 − 3)],
[x = t, y = 0], [x = t, y = 1]}

Note that the first and last expansions in the set above do not have cen-
ters at the origin. Further, as explained above, the expansion [x = t, y =
tRootOf( Z2−3)] represents two places (that is (t,

√
3t+ · · · ) and (t,−

√
3t+

· · · )), each with the same center (namely (0, 0)). Thus there are three local
expansions with center (0, 0). As the three branches have distinct slopes, the
origin is an ordinary triple point. Thus its delta invariant is 3(2)/2 = 3.

>singularities(f,x,y);

[[RootOf( Z2 + 1), 1, 0], 3, 3, 3], [[0, 0, 1], 3, 3, 3]
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As the singularities are computed up to conjugation, the first triple in the
set above represents the two (non-affine) homogeneous triples (i : 1 : 0) and
(−i : 1 : 0), each having the same values for m, δ and R. The sum of the delta
invariants is 9 and not 6 as might be expected from the above output.

2.6 Genus of a Riemann Surface

In this section, we discuss how one algorithmically computes the genus of a
Riemann surface associated with a possibly singular plane algebraic curve.
The algorithm relies on the various quantities discussed in the previous sec-
tions. The genus is an important ingredient for the algorithms of the following
sections on the computation of the Riemann matrix (Sect. 2.10) and the Abel
map (Sect. 2.11).

Once the delta invariants of all singularities (finite and infinite) are known,
the genus is given by (d−1)(d−2)/2 minus the sum of all the delta invariants
[Abh90]:

g =
(d− 1)(d− 2)

2
−
∑

P∈S
δP . (2.38)

Example. In what follows, a few examples of the output of the genus
command are given. If the polynomial given as input can be factored, the
genus command returns −1. We consider two algebraic curves defined by
fj(x, y) = 0, j = 1, 2:

f1 = y4 − y2x + x2 , (2.39)
f2 = y3 − (x3 + y)2 + 1 . (2.40)

The first of these curves, f1(x, y) = 0 is reducible. The second one is a curve
of genus 4.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f1:=y^4-y^2 x+x^2:
># calculate the genus of f1(x,y)=0
>genus(f1,x,y);
>Warning, negative genus so the curve is reducible

−1

># factor the curve
>evala(AFactor(f1));

(
y2 +

−1− RootOf( Zˆ2 + 3)
2

x

)(
y2 +

−1 + RootOf( Zˆ2 + 3)
2

x

)
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># define the algebraic curve
>f2:=y^3-(x^3+y)^2+1:
># calculate the genus of f2(x,y)=0
>genus(f2,x,y);

4

># the same result is obtained if we switch the order of
># the variables
>genus(f2,y,x);

4

2.7 Monodromy of a Plane Algebraic Curve

The monodromy of a plane algebraic curve is the input for Tretkoff–Tretkoff’s
algorithm [TT84] for the construction of a homology basis of a Riemann sur-
face, as discussed in Sect. 2.8. In this section we study an algorithm to compute
the monodromy of a plane algebraic curve.

An algebraic curve gives rise to a covering of the Riemann sphere.3 The
monodromy of a plane algebraic curve encodes how the different sheets of this
covering glue together to form one smooth whole.

The calculation of the monodromy group of an algebraic covering y(x)
requires several ingredients. First, we select a base point x = a in the complex
x-plane. This base point is a finite regular point of the algebraic covering y(x),
i.e., for x = a, n distinct finite y-values exist. These n y-values may be assigned
an order, (y1, y2, . . . , yn). This ordering of the n y-values labels the sheets of
the algebraic covering y(x). For each branch point b one chooses a path γb
in the complex x-plane which starts and ends at x = a and encircles only
the branch point x = b, counterclockwise. Next, the n-tuple (y1, y2, . . . , yn) is
analytically continued around this path γb. When one returns to x = a, a new
n-tuple is found, which has the same entries as (y1, y2, . . . , yn), but reshuffled:
(yσb(1), yσb(2), . . . , yσb(n)). The permutation σb is read off from this reshuffled
vector. The collection of the permutations at all branch points (including
any singular branch points and points at infinity) determines the monodromy
group of the algebraic curve (2.1). More background on the monodromy group
is found in [DFN85], whereas [TT84] provides more details that are useful for
the later use of the monodromy of a plane algebraic curve in computing the
homology of the associated Riemann surface. We now discuss the steps of the
monodromy computation more systematically.

3 In fact, Riemann introduced the concept of a Riemann surface to examine this
multivaluedness [Rie90].
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1. The problem points of the analytic continuation: The algebraic curve (2.1)
defines an n-sheeted covering y(x) of the extended complex x-plane. For all
but a finite number of values of x in the extended complex plane C

⋃
{∞}

there are n values for y(x) in C
⋃
{∞}. A value for x corresponds to a

singularity or a branch point if and only if there are fewer than n values
for y(x). A branch point of this n-sheeted covering is defined as an x-value
x = b where the vector of roots y(x) does not return to its original value
when one analytically continues y(x) once along a small circle around
x = b.
The notion of problem points P = {b1, b2, . . . , bm} was introduced in
[DvH01] for the purpose of singling out the finite x-values corresponding
to those places on the algebraic curve that require special treatment for the
purposes of numerical analytic continuation. The problem points contain
the collected x-values giving rise to singular points, branch points and
points for which y = ∞. In short, the problem points are all finite x-
values for which the equation f(x, y) = 0 gives rise to fewer than n finite
and distinct roots y.
The set of problem points is found by calculating (a) the roots of Δ(x) = 0,
where Δ(x) is the discriminant of f(x, y), see (2.24), namely the resultant
of f(x, y) and fy(x, y)/an(x) [vdW91], and (b) the roots of an(x) = 0. If
x is a root of the latter equation, then the equation f(x, y) = 0 effectively
drops in degree, resulting in some roots y being infinite. Note that the
addition of the roots of an(x) = 0 is necessary due to the definition of
the discriminant. Since both the discriminant Δ(x) and an(x) are poly-
nomials in x, the number of problem points is finite. The discriminant
points are either branch points or singular points. Singular points may
have non-trivial monodromy in which case they are also branch points.
In the algorithms, the problem points are the union of roots of an(x) = 0
or Δ(x) = 0.

2. Encircling the problem points: In order to compute the monodromies of
the covering y(x), the vector y(x) is analytically continued along paths
encircling the problem points. Though the monodromy of the roots of
an(x) = 0 and certain singular points is trivial, the paths for the ana-
lytical continuation of the y(x) also stay away from these points to avoid
numerical problems. In order to simplify control of the numerical accuracy,
the paths stay a (finite) distance r(bi) away from each problem point bi.
Thus, to every problem point bi, we associate a radius r(bi) as follows:

r(bi) =
2
5
ρ(bi, {b1, b2, . . . , bm}\{bi}) , (2.41)

where ρ denotes distance. In other words, r(bi) is two fifths of the dis-
tance of bi to the next nearest problem point. The ratio 2/5 is somewhat
arbitrary; other numbers between 0 and 1/2 might be used. Important is
that the circles C(bi, r(bi)) do not intersect each other.
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3. The choice of the base point: A base point a is chosen such that x = a
is at least a distance r(bs) away from the nearest problem point bs, and
such that the real part of a is smaller than the real parts of any of the bi.
By the latter choice, the arguments of bi − a are between −π/2 and π/2.
For plane algebraic curves defined by (2.1) with real coefficients, the base
point is chosen to be real.

4. Labeling of the sheets: At the base point x = a there are n distinct finite
y-values. These are determined numerically as the solutions of f(a, y) = 0.
Let these n y-values be assigned an order (y1, y2, . . . , yn), which is denoted
as y(a). Assigning such an order to these y-values labels the sheets of the
covering y(x): sheet one is the sheet containing y1, sheet 2 is the sheet
containing y2, and so on. Note that because x = a is at least a distance
r(bs) away from the nearest problem point bs, the values (y1, y2, . . . , yn)
are well separated.

5. Ordering the problem points of the analytic continuation: A consistent
ordering needs to be imposed on the problem points. We choose to order
these points according to their argument with respect to the base point: if
arg(bi− a) < arg(bj − a), then bi precedes bj in the ordering, where arg(·)
denotes the argument function. If arg(bi−a) = arg(bj−a), then bi precedes
bj in the ordering if |bi− a| < |bj − a|. This ordering results in an ordered
m-tuple of problem points: (b1, b2, . . . , bm). The same notation is used for
the ordered problem points as for the elements of the non-ordered set.

6. Choice of the paths: Next, we choose paths for the analytic continuation.
These paths are composed of line segments and semi-circles. The simplest
path L(bi) around bi consists of one line segment from a to bi − r(bi).
This is followed by the circle C(bi, r(bi)), starting at bi − r(bi). Succes-
sively, a line segment is followed from bi−r(bi), back to a. However, if this
path intersects one of the circles C(bj , r(bj)), j 	= i, we modify the path
to another one that is homotopic4 to it. If a path intersects one of the
circles C(bj , r(bj)), j 	= i, this indicates that it comes close to the prob-
lem point bj . As a consequence, the sheets of the covering would not be
well separated along the path, which complicates the numerical analytical
continuation. Therefore we wish to avoid this. The situation may be reme-
died as indicated in Fig. 2.5: the path takes a detour along a semi-circle
around bj . Whether this semi-circle goes above or below bj depends on
the relative positions of a, bi and bj . The semi-circle is chosen such that
the new path is deformable to L(bi), without crossing any problem points
of the analytic continuation.
This process is iterated, until a path is obtained, which stays at least
r(bj) away from bj , for j = 1, 2, . . . ,m. The iteration of this process is not
sufficient to ensure that the chosen path is homotopic to the straight-line
path from the base point a to bi − r(bi). To ensure that a correct path is

4 In this context we call two paths homotopic to each other if they may be contin-
uously deformed to one another without crossing any problem points.
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Fig. 2.5. Choosing the path from x = a to x = bi. The path around bi is indicated in
a thick black line. (a) The simplest path intersects C(bs, r(bs)). (b) This is remedied
by a new path which is homotopic to the previous one. The new path intersects
C(bj , r(bj)). (c) This is remedied by another path, which is homotopic to both
previous paths

chosen, our implementation explicitly checks for the presence of problem
points between the chosen path and the straight-line path. If such points
are present, the path is modified to go around them, after which the check
procedure is re-iterated.

7. Numerical analytic continuation: Consider two non-problem points x = x1

and x = x2. Corresponding to x1 is an ordered n-tuple y(x1). When a
path is followed in the complex x-plane from x1 to x2, the entries of y(x1)
follow paths on the cover to the roots of f(x2, y) = 0, which gives rise
to an n-tuple y(x2), whose ordering is induced by the ordering of y(x1).
If x1 and x2 are relatively close to each other so that the path between
them deviates little from a straight-line segment and provided it does not
pass through or near any problem points, then

y(x2) = y(x1) + y′(x1)(x2 − x1) + ϑ(|x2 − x1|2) , (2.42)

and the last term is small when x2 and x1 are sufficiently close (to make
this precise one needs to bound the second derivative of y(x) to find a
bound for ϑ(|x2− x1|2)). Here y′(x1) is the n-tuple of derivatives to y(x)
at x1. Using implicit differentiation we have

y′(x1) = −
(
fx(x1, y1(x1))
fy(x1, y1(x1))

,
fx(x1, y2(x1))
fy(x1, y2(x1))

, . . . ,
fx(x1, yn(x1))
fy(x1, yn(x1))

)
, (2.43)

where a subindex x or y denotes partial differentiation and yi(x1), i =
1, . . . , n denotes the i-th component of y(x1). Under the above condi-
tions, the first two terms of (2.42) give a good approximation to y(x2).
Having the unordered entries of y(x2) at our disposal and comparing them
with the ordered approximation y(x1)+y′(x1)(x2−x1) allows us to deter-
mine the ordering of these entries, resulting in the ordered n-tuple y(x2).
Clearly, in order to avoid matching up the entries of y(x2) with the wrong
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entries of the ordered approximation, the numerically acceptable size of
|x2 − x1| depends on the absolute differences between the components
of y(x2).
If |x2 − x1| is not small, or if the path connecting them deviates signif-
icantly from a straight-line segment, then an analytic continuation from
y(x1) to y(x2) is obtained by iterating the above process along sufficiently
small segments of the path, such that the necessary conditions above are
satisfied. Note that y(x2) is dependent on the path chosen from x1 to x2.
For brevity of notation, this dependence is not made explicit.

8. The monodromy group: For the set {b1, . . . , bm} of branch points, consider
the paths γk generating the fundamental group π1(CP 1 \ {b1, . . . , bm})
which satisfy the relation γ1 . . . γm = id (see Fig. 1.15 in Chap. 1). After
analytic continuation of y(a) along the path γk around bk, the entries of
y(a) are recovered, but they are shuffled by the permutation σbk :

Π(bk)y(a) = Π(bk)(y1(a), y2(a), . . . , yn(a))

=
(
yσbk (1), yσbk (2), . . . , yσbk (n)

)
, (2.44)

where Π(bk) denotes the action of analytic continuation along γk. The
collection of all σbk generates the monodromy group of the covering, which
is represented here as a subgroup of Sn, the group of permutations of
{1, 2, . . . , n}. Note that this representation depends on the choice of the
labeling of the y-values at x = a, so it is only unique up to conjugation.
More details are found in [DFN85].
Despite the numerical nature of the analytic continuation of y(x), it is
possible to identify y(x) uniquely after a full cycle around a point, since
there is only a finite number of components of y(x). Thus the monodromy
is obtained exactly.

9. Infinity: The point x =∞ might also be a branch point. The correspond-
ing permutation σ∞ is computed by encircling all problem points in a
clockwise sense. On the base of the covering, this is equivalent to encir-
cling the point at infinity in a counter-clockwise sense. If this permutation
is not the identity, then the point x = ∞ is a branch point. Otherwise it
is not.
Having found this permutation, the program performs one of many inter-
nal checks by verifying that

σ∞ ◦ σbm ◦ σbm−1 ◦ . . . ◦ σb2 ◦ σb1 = 1 . (2.45)

Since a closed path in the extended complex x-plane that encircles all
branch points is homotopic to a point, analytic continuation along such a
path will not permute the entries of y(a). Alternatively, we could use (2.45)
to compute σ∞, but this eliminates a possible check. In what follows, it is
always assumed that the list b1, b2, . . . , bm includes x =∞ if it is a branch
point. In this case, σ∞ is also assumed to be included in the permutation
list σb1 , . . . , σbm .
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Example. We use the above algorithm to compute a representation of the
monodromy group for the algebraic covering y(x) corresponding to F (x, y) =
y3−(x3 +y)2+1 = 0: the command monodromy(f,x,y) gives a list with three
elements. The first element is the choice of the base point x = a. The second
element is y(a), which is a list of n = 3 elements. The third element is a list
of the branch points bi with corresponding permutations σbi , given in disjoint
cycle notation.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=y^3-(x^3+y)^2+1:
># calculate the monodromy representation for y(x)
>m:=monodromy(f,x,y,‘showpaths‘):
># the base point x=a
>m[1];

−1.27297541004

># the sheets y(a)
>m[2];

[.0907534141676− 1.99219212537i, .0907534141676+ 1.99219212537i,
.818493171665]

># the branch points with their permutations
>m[3];

[[−.573843481646− .993926065804i, [[2, 3]]],
[−1.03977417810− .167751539921i, [[2, 3]]],
[−.372303356542− .644848329360i, [[1, 2]]],
[.374609993952− .984346622390i, [[1, 3]]],
[.665164184143− .816595082469i, [[2, 3]]],
[.744606713085, [[1, 2]]], [1.14768696329, [[1, 3]]],
[.665164184143+ .816595082469i, [[1, 3]]],
[.374609993952+ .984346622390i, [[2, 3]]],
[−.372303356542+ .644848329360i, [[1, 2]]],
[−1.03977417810+ .167751539921i, [[1, 3]]],
[−.573843481646+ .993926065804i, [[1, 3]]]]

Thus, starting from the ordered sheets 1, 2 and 3 above the base point
x = −0.724402557170 (i.e., from the ordered y-values 0.0907534141676 −
1.99219212537i, 0.0907534141676+1.99219212537i, 0.818493171665), and en-
circling x = 0.374609993952 − .984346622390i, one finds that sheet 1 has
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Fig. 2.6. The complex x-plane and the paths followed for the analytic continuation
of y(x), with y3 − (x3 + y)2 + 1 = 0. The base point x = a is at the left

become sheet 3 and sheet 3 has become sheet 1. Sheet 2 was not affected
by encircling this branch point. The optional argument showpaths produces
Fig. 2.6. This shows the paths followed in the complex x-plane for the analytic
continuation of y(x).

Remarks

• The reader should note that throughout the above procedures, no mention-
ing is ever made of branch cuts. Any book on complex analysis will state
that the choice of branch cuts is irrelevant for many purposes. This is clear
from the presentation above: branch cuts are never introduced! Branch
cuts provide a recipe for performing analytic continuation, by specifying
the range of the argument function. They are also often convenient means
for understanding the geometry of the Riemann surface under investiga-
tion: In practice they are artificial boundaries on the Riemann surface
delimiting the several sheets. They loose much of their practical value
when one leaves the realm of hyperelliptic surfaces. In the above, branch
cuts could have been introduced as segments from the base point to the
branch points.

• The construction of the paths for a general plane algebraic curve is a hard
problem. Most of the algorithms discussed in this chapter rely on local
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Fig. 2.7. A genus 2 surface with a canonical basis of cycles

analytic structures near specific points. The construction of the paths is
the main part of the algorithms, where the global geometry of the curve
is encoded. It is relatively easy to construct examples, where the loca-
tion of the problem points is such that the iterative algorithm described
above does not terminate unless the user-specified accuracy is sufficiently
high. In such cases the user may get an error message making exactly this
statement, asking the user to increase the accuracy and to try again.

• Recent work by Adrien Poteaux [Pot07] has resulted in an algorithm for
the computation of the monodromy of a plane algebraic curve that gives
correct results, without requiring user interaction. The algorithm appears
to be competitive in that it is computationally not significantly more ex-
pensive than that described above.

2.8 Homology of a Riemann Surface

With the monodromy of a plane algebraic curve at our disposal, in this section
we construct a basis for the homology of the Riemann surface obtained from
such an algebraic curve. We define a cycle to be a closed, oriented, smooth or
piecewise smooth curve. Since a Riemann surface of genus g is topologically
equivalent to a sphere with g handles, on a surface of genus > 1 there are
cycles (those encircling the handles or the holes) which cannot be deformed to
points. As stated in Chap. 1, on a Riemann surface Γ of genus g, it is possible
to choose 2g nonhomologous cycles such that their intersection indices are as
follows:

ai ◦ aj = 0, bi ◦ bj = 0, ai ◦ bj = δij , i, j = 0, . . . , g , (2.46)

where δij is the Kronecker delta: it is one if i = j and zero otherwise. A basis
for the homology of the Riemann surface Γ with these intersection indices is
called a canonical basis of cycles. Figure 2.7 illustrates the canonical homology
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basis for a g = 2 surface. Notice that a canonical basis for the homology is
not uniquely determined by the intersection conditions (2.46).

A combinatorial algorithm for the calculation of a canonical basis for the
homology of a Riemann surface specified by its monodromy structure was pub-
lished by C. L. Tretkoff and M. D. Tretkoff in 1984 [TT84]. The monodromies
computed in the previous section allow us to use the methods of [TT84].

Since our implementation follows the Tretkoff–Tretkoff algorithm, we limit
our discussion of it. Full details may be found in [TT84]. A short geometrical
sketch of the algorithm is as follows:

1. Choose a base point x = a as before. In practice, this is the same base
point as for the monodromy algorithm.

2. Indicate all places on the Riemann surface Γ , corresponding to x = a
contained in y(a). This gives n places Ai = (a, yi(a)), i = 1, 2, . . . , n on
the Riemann surface, which effectively label the sheets of Γ .

3. Let x = b denote a branch point in the complex x-plane. Denote one of the
disjoint cycles of the corresponding permutation σb by τ . Then the sheets
labeled by Ak, with k ∈ τ meet at a branch place B on the Riemann
surface, with x-value b. Similarly, each one of the disjoint cycles of any σb
corresponds one-to-one to a branch place on the Riemann surface, with
x = b. In particular, the number of branch places on the Riemann surface
with x = b is the number of disjoint cycles in σb, not including fixed
points. The total number of places on the Riemann surface with x = b is
the number of disjoint cycles in σb, including fixed points. In what follows,
we denote the disjoint cycle in σb corresponding to B by τB .
Now, on the Riemann surface, indicate all branch places, including branch
places at infinity. Let t denote the total number of branch places and Bi,
i = 1, 2, . . . , t the branch places on the Riemann surface.

4. Next join every branch place Bi to each place Aj , for which j ∈ τBi ,
i = 1, . . . , t, using paths which only meet at the places Bi and Aj . Thus,
every branch place Bi is connected to all places Aj which can be reached
by paths emanating from Bi with no other branch places Bj , j 	= i on
this connection.
This creates a non-directed graph on the Riemann surface, with n + t
vertices.

5. This graph is reduced to a spanning tree by removing a number of edges,
say r edges. Denote these edges by ei, i = 1, . . . , r.

6. This spanning tree contains no closed paths, by definition. Adding to it
the removed edge e1 gives rise to a unique closed path on the Riemann
surface. Fix an orientation on this closed path, thus defining a cycle c1.

7. Similarly, every other removed edge ek gives rise to a closed path on the
Riemann surface. If this path has any edges in common with the cycles
c1, c2, . . . , ck−1, then an orientation is induced from these cycles on the
cycle ck. Otherwise, an orientation is chosen. This way, a collection of r
cycles c1, . . . , cr is obtained on the Riemann surface.
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Tretkoff and Tretkoff [TT84] show that the cycles constructed above are
all nontrivial, i.e., they cannot be contracted to a point. Furthermore,

r = 2g + n− 1 , (2.47)

where g is the genus of the Riemann surface.
Since n > 1 (otherwise y(x) is a single-valued function), r > 2g. Thus the
above construction results in more cycles than are required for a basis of the
homology, which has dimension 2g.

In [TT84], Tretkoff–Tretkoff present an algorithmic way to cut the above-
mentioned graph on the Riemann surface across the edges e1, . . . , er. This
results in a planar graph which contains cut copies of the cycles c1, . . . , cr.
They show how this planar graph is used to find the intersection num-
bers Kij = ci ◦ cj , i, j = 1, . . . , r, resulting in an r × r intersection matrix
K = (Kij)

g
i,j=1 = (ci ◦ cj)gi,j=1. Because only 2g of the cycles c1, . . . , cr are

independent, the rank of this matrix is 2g. Furthermore, an r × r matrix α
with integer entries and determinant ±1 exists such that

αKαT = J =

⎛

⎝
0g Ig 0g,n−1

−Ig 0g 0g,n−1

0n−1,g 0n−1,g 0n−1,n−1

⎞

⎠ , (2.48)

with 0g being the g× g zero matrix, Ig the g× g identity matrix and 0p,q the
p× q zero matrix. We now define the cycles

ai =
r∑

j=1

αijcj , bi =
r∑

j=1

αi+g,jcj , i = 1, . . . , g . (2.49)

It is straightforward to check that these cycles satisfy (2.46). Hence the cycles
a1, . . . , ag, b1, . . . , bg define a canonical basis of cycles for the homology of
the Riemann surface. The non-uniqueness of such a basis is a restatement
of the non-uniqueness of the matrix α. This matrix is the transformation
matrix from the basis of cycles c1, . . . , cr to the canonical basis. Its first 2g
rows prescribe the linear combination of the cycles c1, . . . , cr which results in
the canonical basis. Its last n − 1 rows confirm the dependence of the cycles
c1, . . . , cr:

r∑

j=1

αijcj = 0, i = 2g + 1, . . . , 2g + n− 1 . (2.50)

Example. In the following example, we compute a canonical basis for the
homology of the Riemann surface of genus 3 corresponding to y3− (x2 +y)2 +
1 = 0. Note that the example is a little different from that used to illustrate
the use of the monodromy command, so as to demonstrate what happens
when x =∞ is a branch point. The command homology(f,x,y) results in a
table. This table has the following entries:

1. basepoint: the base point x = a for the analytic continuation of the
algebraic covering y(x).
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2. sheets: the ordered n-tuple y(a).
3. cycles: the cycles c1, c2, . . . , cr. The cycles are given as lists. The first

element of the cycle ck specifies the starting sheet yi(a), by displaying i.
The second element is a branch point x = b in the complex x-plane,
together with the disjoint cycle of σb, which contains i. The third element
is a sheet yj(a), given by j. This part of the cycle ck is read as: “From
sheet i proceed to sheet j, by encircling the point x = b”. It is possible
that x = b needs to be encircled more than once, in order to get from sheet
i to sheet j. Having arrived at sheet j, this process now repeats. The list
is cyclical, meaning that after encircling the last branch point, one arrives
again at the initial sheet, so as to obtain a cycle on the Riemann surface.

4. linearcombination: the first 2g rows of the matrix α, as discussed above.
5. canonicalcycles: the result of combining linearcombination and

cycles. Each of the cycles a1, . . . , ag, b1, . . . , bg is given as a list. Adding
these lists gives a basis element of the canonical basis of cycles. Usu-
ally, only one list is necessary for each canonical-basis element. Since
the canonical-basis elements are obtained from the information in both
cycles and linearcombination, their representation is typically more
complicated. Also, instead of specifying the disjoint cycle of the permu-
tation at the branch point, the number of times one needs to encircle
the branch point in the complex x-plane counterclockwise is given. If this
number is negative, the branch point needs to be encircled clockwise as
many times as the absolute value of the number.

6. genus: this entry gives the genus of the Riemann surface, by halving
the dimension of the canonical basis. This topological calculation is com-
pletely independent of the one using Puiseux expansions, used by the
genus algorithm [vH95] discussed in Sect. 2.6.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=y^3-(x^2+y)^2+1=0:
># calculate the homology of the Riemann surface
># corresponding to f.
>h:=homology(f,x,y):
># the base point x=a
>h[basepoint];

−1.46431608476

># the sheet labels y(a)
>h[sheets];

[−.951818492315− .577121407841i,−.951818492315+ .577121407841i,
2.90363698463]
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># the cycles c_1,...,c_r
>eval(h[cycles]);

table([1 = [1,[−.256859579359− 1.04991843161i, [1, 2]],
2,[−1.22951879712, [1, 2]]],

2 = [1,[1.22951879712, [1, 3]], 3, [.256859579359+1.04991843161i, [1, 3]]],
3 = [1,[−.256859579359− 1.04991843161i, [1, 2]],

2,[−.256859579359+ 1.04991843161i, [1, 2]]],
5 = [1,[1.22951879712, [1, 3]], 3, [∞, [1, 2, 3]]],
4 = [1,[−.256859579359− 1.04991843161i, [1, 2]], 2, [∞, [1, 2, 3]]],
7 = [1,[−.256859579359− 1.04991843161i, [1, 2]],

2,[−.642525578033, [2, 3]], 3, [1.22951879712, [1, 3]]],
6 = [1,[−.256859579359− 1.04991843161i, [1, 2]],

2,[.256859579359−1.04991843161i, [2, 3]], 3, [1.22951879712, [1, 3]]],
8 = [1,[−.256859579359− 1.04991843161i, [1, 2]],

2,[.642525578033, [2, 3]], 3, [1.22951879712, [1, 3]]])

># the first 2g rows of the matrix alpha:
>h[linearcombination];

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0
0 0 0 1 −1 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

># the canonical-basis cycles
>eval(h[canonicalcycles]);

table([b[1] = [[1,[−.256859579359− 1.04991843161i, 1],
2,[−.642525578033, 1], 3, [∞, 1]]],

a[3] = [[1,[∞, 1], 2, [−.256859579359+ 1.04991843161i,−1]]],
a[2] = [[1,[1.22951879712, 1], 3, [.256859579359+ 1.04991843161i,−1]]],
a[1] = [[1,[−.256859579359−1.04991843161i, 1],2, [−1.22951879712,−1]]],
b[2] = [[1,[−.256859579359− 1.04991843161i, 1],

2,[−1.22951879712,−1], 1, [1.22951879712, 1], 3, [∞, 1]]],
b[3] = [[2,[∞, 1], 3, [−.642525578033,−1]]]

])
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Thus, the cycle c1 is as follows: start on sheet 1 (thus x =
−1.46431608476, y = −0.951818492315− 0.577121407841i); encircle branch
point x = −0.256859579359 − 1.04991843161i to arrive at sheet 2 (thus
x = −1.46431608476, y = −0.951818492315 + 0.577121407841i); encircle
branch point x = −1.22951879712 to arrive back at sheet 1 (thus x =
−1.46431608476, y = −0.951818492315− 0.577121407841i, once again).

Using the linear combination matrix from the above example, the cycle
b1 is given by b1 = c5 + c7, which is rewritten as: start from sheet 1 (x =
−1.46431608476, y = −0.951818492315− 0.577121407841i); encircle branch
point x = −0.256859579359− 1.04991843161i once counterclockwise, ending
up at sheet 2 (x = −1.46431608476, y = −0.951818492315+0.577121407841i);
encircle branch point x = −0.642525578033 one time counterclockwise, and
end up at sheet 3 (x = −1.46431608476, y = 2.90363698463); encircle branch
point x =∞ one time counterclockwise, and find yourself back at sheet 1 (back
at x = −1.46431608476, y = −0.951818492315−0.577121407841i). Remember
that any negative “encircling numbers” imply that the branch point should
be encircled clockwise, as is necessary, for instance, for cycle a3.

Remarks

• Our implementation of the Tretkoff–Tretkoff algorithm [TT84] in
“algcurves” is not the first program to implement this algorithm [TT84].
Such a program in Turbo Pascal was already announced in [BT92].
A rewrite in C++ was also communicated to the authors in 1999 (Berry
and Tretkoff, Private communication, 1999).These programs start from
a representation of the monodromy group of a Riemann surface and con-
struct from it a canonical basis for the homology. To the best of our knowl-
edge, the Maple program homology, presented here, is the only program
that calculates a canonical basis for the homology of a compact connected
Riemann surface defined via the equation of a plane algebraic curve with
exact coefficients.

• Since it is entirely combinatorial, the homology algorithm is guaranteed
to return the correct result if it received the correct input in the form of
the monodromy structure of a plane algebraic curve. The algorithm relies
on the monodromy algorithm, which may require the user to increase the
default accuracy, as discussed in the Remarks at the end of Sect. 2.7.

2.9 Holomorphic 1-Forms on a Riemann Surface

A basis for the holomorphic 1-forms on a Riemann surface specified by an
algebraic curve is given by the span of {ω1, . . . , ωg}, where ω1, . . . , ωg are
linearly independent holomorphic differentials on the surface. Consider the
case of the extended complex x-plane, i.e., the Riemann sphere. Let R(x) be
a non-zero meromorphic function on the Riemann sphere. Since meromorphic
functions on the Riemann sphere are rational functions, R(x) = pn(x)/qm(x),
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with pn(x) and qm(x) polynomials in x of degrees n and m respectively. Then
ω = R(x) dx is by definition a meromorphic differential on the Riemann
sphere, i.e., a differential whose only singularities are poles. This differential
has poles at the zeros of qm(x). Hence, in order for ω to be holomorphic, qm(x)
is constant. Without loss of generality, let qm(x) = 1. Furthermore, using
τ = 1/x as a local parameter at x = ∞, we can write ω = −pn(1/τ) dτ/τ2

at infinity. Hence ω has a pole at infinity unless pn(1/τ) has at least a double
root at τ = 0, but this is impossible. Thus on the Riemann sphere no non-
zero holomorphic differentials exist. However, for genus greater than zero, the
situation is different; non-zero holomorphic differentials do exist.

The holomorphic differentials are all of the form (see [BK86] or [Noe83])

ωk =
Pk(x, y)
∂yf(x, y)

dx . (2.51)

Here Pk(x, y) =
∑

i+j≤d−3 ckijx
iyj is a polynomial in x and y of degree at

most d − 3, where as before d is the degree of f(x, y) as a polynomial in x
and y. Clearly there are no more than (d − 1)(d − 2)/2 linearly independent
polynomials Pk(x, y) of this form. These polynomials, for which the differ-
ential ω = P (x, y)/∂yF (x, y) dx has no poles in A, are referred to as the
adjoint polynomials. If the curve Γ̂ (recall, Γ̂ is the compactified algebraic
curve, whose corresponding Riemann surface is Γ ) is nonsingular, then all
polynomials P (x, y) of degree ≤ d − 3 give rise to a holomorphic differential
ω = P (x, y)/∂yF (x, y) dx. This is of course consistent with the genus of a
nonsingular plane algebraic curve of degree d being exactly (d − 1)(d − 2)/2
[BK86], as was already stated in Sect. 2.6.

The denominator ∂yF (x, y) vanishes at the branch points of y(x) as well
as at the singular points, whereas the differential dx vanishes (using local
coordinates) only at the branch points of y(x). Therefore, in order for the
differential ωk not to have poles at the singular points, the numerator Pk(x, y)
has to vanish at the singular points. Noether [Noe83] showed that on the
algebraic curve at a singular point P of multiplicity mP the adjoint polynomial
Pk(x, y) vanishes with multiplicity at least mP − 1. Imposing regularity of
the differentials (2.51) at a point P imposes a number of independent linear
conditions on the coefficients ckij of the polynomial Pk(x, y). The number of
such conditions is equal to the delta invariant δP of the singularity P , see
Sect. 2.5.

For every singular point, there are mP (mP − 1)/2 linear conditions which
are easily computed. These arise from the fact that Pk(x, y) should vanish
at P with multiplicity mP − 1. If δP = mp(mP − 1)/2 this is a sufficient
number of linear equations. Otherwise δP > mp(mP − 1)/2, and more linear
equations are required. Singular points P with δP > mP (mP −1)/2 are called
special singularities. These extra linear conditions are obtained by using the
Puiseux expansions at the singular points at sufficiently high order: direct
substitution of the Puiseux expansion in the candidate expression for the
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holomorphic differential results in different combinations of the coefficients
that necessarily vanish to avoid the presence of singular behavior. Singular
points at infinity require a similar treatment, after representing the plane
algebraic curve in homogeneous coordinates (X,Y, Z) and equating X or Y
to 1.

A different way to obtain the adjoint polynomials is through the use of
the Newton polygon [Nov01]. Given the equation f(x, y) = 0 for the algebraic
curve Γ̂ , its Newton polygon N (Γ̂ ) is the convex hull of all points in the
(i, j) plane for which the coefficient of xiyj in the equation is nonzero. For
each interior point (i, j) (not including boundary points) of N (Γ̂ ), one may
construct a meromorphic differential

ωij =
xi−1yj−1

∂yf(x, y)
dx . (2.52)

If the algebraic curve is nonsingular, the number of differentials so obtained
is exactly g, and all are holomorphic [Nov01]. However, if the curve is sin-
gular, linear combinations of these differentials have to be identified that are
holomorphic in each set of local coordinates. As above, using the Puiseux
expansions at the singular points, this leads to a sufficient number of linear
conditions on the coefficients of these linear combinations. As the following
example shows, this approach has the advantage that generically fewer can-
didate differentials are found, simplifying the calculations to incorporate the
behavior at the singularities.

Example. We use the familiar example of a hyperelliptic curve to illustrate
the above two approaches. Let

f(x, y) = y2 − P2g+1(x) , (2.53)

where P2g+1(x) is a polynomial of degree 2g + 1 in x, with only single roots.
The corresponding algebraic curve has genus g [Gri89], and there is only one
singular point, namely at infinity.

Using the first approach, our candidate holomorphic differentials are

ωk =
Pk(x, y)

y
dx , (2.54)

where k = 1, . . . , (d − 1)(d − 2)/2, with d = 2g + 1. Thus there are (d − 1)
(d− 2)/2 = g(2g − 1) possible differentials. For large genera, the discrepancy
between the number of independent holomorphic differentials and the number
of candidate differentials increases quadratically.

On the other hand, using the Newton polygon approach, we obtain

ωij =
xi−1yj−1

∂yf(x, y)
dx , (2.55)
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Fig. 2.8. The Newton polygon for a generic hyperelliptic curve of genus g = 2,
represented in Weierstrass form

where j = 1 to avoid the boundary of the polygon, and i = 1, . . . , g. A Newton
polygon for the g = 2 case is illustrated in Fig. 2.8. We see that, at least for
this simple example, the Newton polygon immediately gives a basis of the
holomorphic differentials of the correct dimension.

The differentials command from the “algcurves” package uses nei-
ther of these approaches. A convenient way to determine the adjoint poly-
nomials Pk(x, y) is to use a theorem of Mñuk [Mn97]. This way relies on
the computation of an integral basis, see Sect. 2.4. Denote the set of all
adjoint polynomials by Adj(Γ̂ ). The elements of Adj(Γ̂ ) are polynomials
P (x, y) ∈ C[x, y] for which the differential ω = P (x, y)/∂yF (x, y) dx has
no poles in A. Then, for any element f ∈ OA(Γ ), fω also has no poles in A.
In fact one can show that in this case fP (x, y) is again a polynomial, and
hence is in Adj(Γ̂ ), see [Mn97]. Denoting by OA(Γ ) · Adj(Γ̂ ) the set of prod-
ucts of elements of OA(Γ ) with elements of Adj(Γ̂ ), this statement is written
as OA(Γ ) · Adj(Γ̂ ) ⊂ Adj(Γ̂ ) ⊂ C[x, y], since all elements of Adj(Γ̂ ) are by
definition polynomials in x and y. Theorem 3.3 in [Mn97] shows that this
condition determines the adjoint polynomials completely:

Adj(Γ̂ ) =
{
P (x, y) | OA(Γ ) · P (x, y) ⊂ C[x, y]

}
. (2.56)

Using this result, the linear conditions on the coefficients cij of P (x, y) =∑
i+j≤d−3 cijx

iyj arising from the finite singularities are easily found: having
found an integral basis {β1, . . . , βn}, the above equation is equivalent to de-
manding that all products βjP (x, y), j = 1, . . . , n are polynomials in x and y.
Using the equation f(x, y) = 0, powers of yn and higher are eliminated from
the quantities βjP (x, y). Then these quantities are all reduced to the form
Gj(x, y)/Hj(x), with Gj(x, y) a polynomial in x and y, and Hj(x) a polyno-
mial in x. This is rewritten as Gj(x, y)/Hj(x) = Qj(x, y) + Rj(x, y)/Hj(x),
with the degree of Rj(x, y) as a polynomial in x less than the degree of Hj(x).
The condition (2.56) from Mñuk’s theorem then states that all coefficients
of Rj(x, y) as a polynomial in x and y are zero. These coefficients are linear
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combinations of the cij , and they now are equated to zero. After obtaining
similar conditions from the singular points at infinity (see below), the total
set of linear equations for the coefficients cij is solved. The solution set of
these equations is g-dimensional, because there are g linearly independent
holomorphic differentials and Mñuk proves that (2.56) completely determines
the holomorphic differentials. By computing a set of g independent solutions
and substituting these in P (x, y), a set of g linearly independent adjoint poly-
nomials Pk(x, y) is found, and hence by (2.51) a basis ω1, . . . , ωg for the
holomorphic 1-forms is found.

If Γ̂ has special singular points at infinity, a similar reasoning applies, but
only after transforming (2.51) such that it is expressed using the coordinate
functions (X/Y,Z/Y ) or (Y/X,Z/X). Here (X : Y : Z) are the homogeneous
coordinates introduced before. Recall that for finite points on Γ̂ , Z 	= 0, so
that finite points can be denoted by (X,Y ), with Z = 1. Similarly, for infinite
points Z = 0, but at least one of X or Y is non-zero. If at a point at infinity
X 	= 0, then (X : Y : Z) = (1 : Y/X : Z/X). In this case, we put X = 1;
then ŷ = Y/X and ẑ = Z/X are good local coordinate functions near this
point at infinity. Otherwise, if X = 0 but Y 	= 0, then x̃ = X/Y and z̃ = Z/Y
are good local coordinates. In the first case, the differential is transformed to
the new coordinate functions using x = X/Z = 1/ẑ, y = Y/Z = ŷ/ẑ. In the
second case, the transformation is x = X/Z = x̃/z̃, y = Y/Z = 1/z̃. This
transformation is now applied to the equation for the plane algebraic curve
(2.1) and the equation for the adjoint polynomial P (x, y) =

∑
i+j≤d−3 cijx

iyj.
This results in two equations: an equation for the algebraic curve in the new
coordinates and a polynomial P̄ in the new coordinates, namely the numerator
of P (x, y) under the transformation. The coefficients of this new polynomial P̄
are linear combinations of the coefficients cij . Finding an integral basis for the
algebraic curve in the new coordinate functions and applying Mñuk’s result
(2.56) gives linear conditions on the coefficients cij , in addition to the ones
obtained using the coordinate functions x and y for the finite points.

If for some singular points at infinity X = 0, while for others Y = 0, then
this process may have to be repeated a total of three times, using all three
sets of coordinate functions (x, y), (x̂, ẑ) and (ỹ, z̃).

Example. Using f(x, y) = y3+2x7−x3y, we illustrate the above method and
construct the holomorphic differentials. From (2.51), all holomorphic differen-
tials are of the form ω = P (x, y)/(3y2−x3)dx, with P (x, y) =

∑
i+j≤4 cijx

iyj

a polynomial in x and y of degree at most 4. This gives rise to 15 undeter-
mined coefficients cij . Expressed in homogeneous coordinates (X : Y : Z), the
singular points are P1 = (0 : 0 : 1) and P2 = (0 : 1 : 0). The second singular
point P2 is infinite and the conditions it imposes on the coefficients of P (x, y)
are derived after we find the conditions imposed from P1.

The multiplicity of P1 = (0 : 0 : 1) is mP1 = 3, its delta invariant is
δP1 = 4. Since δP1 = 4 > 3 = mP1(mP1 − 1)/2, the integral basis method is
used. The integral basis is found (see Sect. 2.4) to be {1, y/x, y2/x3}. Hence all
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elements of OA(Γ ) are of the form f = f1(x) + f2(x)y/x + f3(x)y2/x3, where
fj(x), j = 1, 2, 3 are polynomials in x.

The integral basis gives rise to the conditions that P (x, y), yP (x, y)/x and
y2P (x, y)/x3 are polynomials in x and y. Clearly only the last two of these
result in any conditions on the coefficients. Demanding that yP (x, y)/x is a
polynomial in x and y, gives c00 = 0 = c01. Demanding that y2P (x, y)/x3 is
a polynomial in x and y gives c10 = 0 = c20. As expected, the singular point
P1 results in δP1 = 4 conditions on the coefficients cij .

We now turn to the singular point at infinity P2 = (0 : 1 : 0). Since
yP2 	= 0, (x̃, z̃) are good coordinate functions near this point. After homoge-
nizing y3 + 2x7 − x3y = 0 and equating Y = 1, we find z̃4 + 2x̃7 − x̃3z̃3 = 0
and this algebraic curve now has a singular point at (x̃, z̃) = (0, 0). The trans-
formed adjoint polynomial is P̄ (x̃, z̃) =

∑
i+j≤4 cij x̃

iz̃4−(i+j). Again, the in-
tegral basis method is used, since δP2 = 9 > 6 = mP2(mP2 −1)/2. An integral
basis is {1, z̃/x̃, z̃2/x̃3, z̃3/x̃5}. Imposing that z̃P̄ (x̃, z̃)/x̃, z̃2P̄ (x̃, z̃)/x̃3 and
z̃3P̄ (x̃, z̃)/x̃5 are polynomials in x̃ and z̃ demands that all cij = 0, except c30
and c11, which are undetermined. Hence the most general adjoint polynomial is

P (x, y) = c11xy + c30x
3 . (2.57)

Thus a basis of holomorphic differentials for the Riemann surface specified by
y3 + 2x7 − x3y = 0 is

ω1 =
xy

3y2 − x3
dx , ω2 =

x3

3y2 − x3
dx , (2.58)

which provides an independent confirmation that the genus of the Riemann
surface considered in this example is g = 2. The calculation of the holomorphic
differentials of the Riemann surface specified by y3+2x7−x3y = 0 using Maple
is given below.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=y^3+2*x^7-x^3*y:
># calculate the holomorphic differentials
>differentials(f,x,y);

[
x3dx

3y2 − x3
,

xydx

3y2 − x3

]

2.10 Period Matrix of a Riemann Surface

The values of the integrals of the holomorphic 1-forms along the cycles of the
homology are closely related to the geometric and analytic structure of the
Riemann surface under consideration [Sie88]. In fact, Torelli’s theorem [Gri89]
states that, up to isomorphisms, a Riemann surface is determined by these
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integrals. The values of the integrals are referred to as the periods of the holo-
morphic differentials. Given bases of both the homology {ai, bi, i = 1, . . . , g}
and for the holomorphic 1-forms {ωi, i = 1, . . . , g}, a period matrix Ω of the
Riemann surface Γ is given by

Ω = (A B) , (2.59)

which is a g × 2g matrix, consisting of two g × g blocks:

A = (Aij)
g
i,j=1 , Aij =

∮

aj

ωi, (2.60)

B = (Bij)
g
i,j=1 , Bij =

∮

bj

ωi. (2.61)

A canonical basis for the holomorphic 1-forms for a canonical basis of the
homology is defined by the normalization

∮

aj

ω̂i = δij . (2.62)

With this basis of holomorphic 1-forms , Â ≡ I, the g × g identity matrix.
The resulting B̂ is called a Riemann matrix. If (A B) is the period matrix
obtained from a non-normalized basis of the holomorphic 1-forms, then a
Riemann matrix B̂ for the Riemann surface is determined by

B̂ = A−1B. (2.63)

The Riemann matrix depends on the chosen basis of the homology. This is
discussed below. It follows from the Riemann relations [Gri89,Spr57] (a conse-
quence of Stokes’ theorem, see Chap. 1) that the Riemann matrix is symmetric
and the eigenvalues of its imaginary part are positive definite. Our algorithm
never imposes these conditions on the Riemann matrix, as they do not allow
us to make the algorithm more efficient or accurate. As a consequence, the
symmetry of the Riemann matrix within the accuracy specified provides an
excellent check on the the computational results. The positivity of the eigen-
values of the imaginary part may be checked as well, but requires a little more
effort on the part of the user.

Having obtained a canonical basis for the homology and the holomorphic
differentials of a Riemann surface using the algorithms of the previous sections,
a period matrix is found by evaluation of the integrals (2.60) and (2.61). Once
a period matrix is found, the Riemann matrix for the Riemann surface follows
from (2.63).

Using (2.49),

∮

aj

ωi =
r∑

k=1

αjk

∮

ck

ωi ,

∮

bj

ωi =
r∑

k=1

αg+j,k

∮

ck

ωi , (2.64)
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and the computation of a period matrix reduces to the computation of the
integrals

∮
ck

ωi, k = 1, . . . , r for the holomorphic differential ωi. By construc-
tion, the cycles ck consists of line segments and semi-circles in the complex
x-plane lifted to the Riemann surface. Each one of these line segments or semi-
circles is parameterized by x = γ(t), with 0 ≤ t ≤ 1. The lifting of x = γ(t),
denoted by y = γ̃(y0, t), is obtained by specifying a starting value y0 of y
(essentially the sheet number), and by analytically continuing this value y0

along x = γ(t). Hence γ̃(y0, 0) = y0 and f(γ(t), γ̃(y0, t)) = 0. Thus we have to
numerically evaluate integrals of the type

∫ 1

0

Pi(γ(t), γ̃(y0, t))
∂yF (γ(t), γ̃(y0, t))

γ′(t)dt . (2.65)

The “algcurves” implementation of our algorithm evaluates these integrals
using Maple’s numerical integration routine. This has the effect that the
user can specify the number of significant digits to be used for the com-
putations. If Digits is the number of significant digits the user specified, the
command periodmatrix(f,x,y) attempts to return the periodmatrix of the
Riemann surface specified by the plane algebraic curve f = F (x, y) with at
least Digits−3 significant digits. If this number of significant digits is not
attained, a warning is issued. The numerical evaluation of the integrals is
slow, since for every evaluation of the integrand numerical analytic continua-
tion is required. As expected, if the user requires more significant digits more
computer time is used.

Example. First we compute a Riemann matrix for the Riemann surface spec-
ified by f(x, y) = y3 + x4 + x2. The genus of this surface is 2, and thus the
surface is hyperelliptic [Gri89]. As the reader may verify, the use of the bira-
tional transformation

u =
y

x
, v =

2x3 + y3

x3
(2.66)

reduces the equation f(x, y) = 0 to

v2 = u6 − 4, (2.67)

which is of the standard form of a hyperelliptic curve of genus 2. Using this,
it is possible to calculate the Riemann matrix associated to f(x, y) = 0 ana-
lytically:

B̂ =

⎛

⎜⎝
1 +

2i√
3
−1− i√

3
−1− i√

3
1 +

2i√
3

⎞

⎟⎠ . (2.68)

># load the algcurves package
>with(algcurves):
># define the algebraic curve
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>f:=y^3+x^4+x^2:
># calculate a period matrix for the Riemann surface
># corresponding to f
>pm:=periodmatrix(f,x,y):
># use only 5 significant digits, for display purposes
>evalf(pm,5);

(
.9999999971 + 1.154700542i −.9999999950− .5773502479i
−.9999999920− .5773502773i 1.000000016 + 1.154700531i

)

>PM:=Matrix([[1+2*I/s,-1-I/s],[-1-I/s,1-2*I/s]]);

PM :=

⎛

⎜⎝
1 +

2i√
3
−1− i√

3
−1− i√

3
1 +

2i√
3

⎞

⎟⎠

> evalf(PM);

(
1. + 1.154700539i −1.− .5773502693i
−1.− .5773502693i 1. + 1.154700539i

)

We see that the “algcurves” implementation gives the promised accuracy.

Example. This example computes a period matrix and a Riemann matrix
for the Riemann surface specified by the algebraic curve given by f(x, y) =
y3 + 2x7 − x3y = 0. Since for this example, an exact answer is not known,
the accuracy of the output is estimated by the absolute values of the anti-
symmetric part of the Riemann matrix.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=y^3+2*x^7-x^3*y:
># calculate a period matrix for the Riemann surface
># corresponding to f
>pm:=periodmatrix(f,x,y):
># use only 5 significant digits, for display purposes
>evalf(pm,5);

(
−.71618− .98573i 1.1588− 2.3480i −1.2184i 1.9715i
−1.8496 + .60096i −1.1431 + 2.7753i −1.9448i −1.2019i

)

># calculate a Riemann matrix for the Riemann matrix
># corresponding to f
>rm:=evalf(periodmatrix(f,x,y,Riemann),10);

(
.2360680016 + 1.175570489i −.1180339855− .3632712593i
−.1180339976− .3632712768i −.5000000061 + .36327127i

)
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># load the linalg package
>with(linalg):
># compute the anti-symmetric part of rm
>evalm(rm-transpose(rm));

(
0 0.121 10−7 + 0.175 10−7

−0.121 10−7 − 0.175 10−7 0

)

># increase the digits used in computations to 20.
>Digits:=20;
># calculate a Riemann matrix using 20 digits.
>rm:=periodmatrix(f,x,y,Riemann):
># compute the anti-symmetric part of rm
>evalm(rm-transpose(rm));

(
0 0.41 10−18 + 0.1 10−19

−0.41 10−18 − 0.1 10−19 0

)

If the roles of the coordinate functions x and y are switched, x is regarded
as an algebraic function of y, x = x(y). This results in an entirely different
monodromy. Thus, the coordinate representation of the homology and which
cycles are chosen as basis elements may be completely different. The period
matrix computation results in a different but symplectically equivalent period
matrix, see Chap. 1.

2.11 Abel Map Associated with a Riemann Surface

The Abel map A from a genus g Riemann surface Γ to its Jacobian J(Γ ) =
C
g/Λ(Γ ) is defined as

A(P0, P ) = (Ai(P0, P ))gi=1 , Ai(P0, P ) =
∫ P

P0

ω̂i , (2.69)

where P0, P are places on Γ , and ω̂i is the i-th normalized holomorphic 1-form.
Also, Λ(Γ ) is the fundamental period lattice associated with the Riemann
surface:

Λ(Γ ) = {M + B̂N , M ,N ∈ Z
g} . (2.70)

The same path from P0 to P is used for all components of A(P0, P ). In almost
all applications, the place P0 is thought of as fixed, whereas the place P may
vary. For the purposes of computing the Abel map, both are treated in the
same way, since obviously

A(P0, P ) = A(P0, Q) + A(Q,P ) = −A(Q,P0) + A(Q,P ) , (2.71)
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where Q is any place on Γ . We choose Q to be the place on the first sheet,
above the base point a. All Abel map computations are split as in (2.71) with
this choice of Q.

The input of the places P0 and P is given in terms of Puiseux series. If P0

and P are regular places, it suffices to specify an (x, y)-pair so that f(x, y) = 0.
On the other hand, if, for instance, P is not a regular place, it needs to be
specified by a Puiseux series of sufficiently high order in order to tell it apart
from any other places with the same x-coordinate. Therefore, at least as many
terms have to be used as necessary to specify the non-regular place as given
by the option 0 in Maple’s Puiseux command, see Sect. 2.3.

As in the previous section, the integrals of the holomorphic differentials
reduce to integrals of the type

∫ 1

0

Pi(γ(t), γ̃(y0, t))
∂yF (γ(t), γ̃(y0, t))

γ′(t)dt , (2.72)

where this time γ(t) is a part of a path from Q to P . This path consists of
segments of the cycles ck, k = 1, . . . , r, for which the integration has already
been done (allowing for the use of Maple’s remember tables, dramatically
increases the speed of the implementation of the algorithm), and new segments
leading from a point on these cycles to the end point P . As before, γ̃ is used
to denote the lift of γ to the appropriate sheet. Let us specify these paths in
more detail. The paths consist of three main parts:

1. A path C1, which is followed from Q to Q̂, where Q̂ lies above the base
point on the same sheet as P . The places P = (xP , yP ) and Q = (xQ, yQ)
are said to lie on the same sheet if following the path constructed in
Sect. 2.7 for the monodromy computation from the point xQ to xP leads
yQ to yP . This first path C1 connects two regular places, and there is no
difficulty involved with using the numerical analytic continuation method,
as outlined in Sect. 2.7. The only issue remaining is which path C1 to
follow. The path used is the shortest in a graph-theoretic sense: using the
result from the monodromy algorithm, a table is made which tabulates
which branch points can be used as gateways to go between which sheets.
Since the Riemann surface is connected, it is possible to go from any sheet
to any other sheet. The path C1 is chosen so that the number of branch
points to encircle is minimized.

2. A second path C2 is followed from Q̂ to P̂ , where P̂ is the place closest
(using the Euclidean distance) to P on a lift of the paths used on the
x-Riemann sphere to the covering, see Fig. 2.9. The beginning and the
endpoint of C2 are regular places, and the numerical analytic continuation
is used as before.

3. A third and last path C3 is followed from P̂ to P . This path can always be
chosen as a straight-line path, which is what we do. By construction, this
path does not pass close to any non-regular place (places above problem
points or infinity), unless P is itself close to an irregular point. If P is not
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Fig. 2.9. Paths taken by the Abel transform to the place P . Depicted are lifts of
the paths introduced for the monodromy algorithm to the appropriate sheet up to
P̂ . From the P̂ to P a straight-line path is used. For (a), the place P is far from any
of the non-regular places, and numerical analytical continuation is used. For (b),
the place P is too close to the non-regular place B, and a symbolic method using
Puiseux expansions is employed

close to an irregular place, numerical analytic continuation may be used,
as for the above two paths. If P is close to, or is an irregular place, then
Puiseux series are used to expand the integrand in a power series of the
local parameter t. The integral near the non-regular place is calculated
symbolically, using this expansion method. We should remark that it was
shown in [Pat07] that the radius of convergence of a Puiseux series around
an irregular place is exactly the distance to the next closest irregular
place. Once this symbolic method has allowed us to step away from the
non-regular point sufficiently far, we again resort to numerical analytic
continuation.
Some more remarks are in order about the symbolic integration steps. The
integrands under consideration are holomorphic differentials, thus they
are regular everywhere. Near a non-regular point, the singular terms are
canceled symbolically, leaving us with a regular power series (truncated,
of course) to integrate symbolically. The symbolic integration routine may
be split in several smaller paths. The method works well in accordance
with the above quoted convergence result, even in the case that P is a
place at or near infinity. By the use of local parameters on the path, all
integrals are proper integrals.

The Abel map is only defined modulo the period lattice of Γ . Thus, if
the user wishes to check, validate or compare results of the calculation, it is
necessary to have an additional command that allows us to reduce vectors
modulo the period lattice, so as to obtain a unique representative inside the
fundamental cell, i.e., on the Jacobian J(Γ ). Such a lattice reduction is easily
implemented: we wish to write the vector v ∈ C

g as

v = [v] + [[v]] , (2.73)
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where [ · ] is a lattice vector, and [[ · ]] is a vector in the fundamental cell. We
have

[v] = M + B̂N , (2.74)

for some M , N ∈ Z
g. From the imaginary part of this equation, we easily

find N , after which M is found from the real part.

Example. A hyperelliptic curve of genus g may be written in Weierstrass
form (see Appendices B and C) as

y2 = P2g+1(x), (2.75)

where P2g+1(x) is a polynomial of degree 2g + 1. It is known that the Abel
map between any two branch points of a hyperelliptic curve is two torsion,
i.e., twice the Abel map is a vector in the fundamental lattice Λ(Γ ) [Mum83].
We test this below for the curve

y2 = (x2 − 1)(x2 − 4)(x2 − 9)(x− 4) , (2.76)

which has genus 3. The user may wish to refer to Sect. 2.3 for the syntax of
the command puiseux, used below. As the starting place for the Abel map we
choose the branch place with x = −2. The final place is the branch place at
∞. The command ModPeriodLattice is not available in Maple 11, but it, or a
variant of it, will be available in Maple 12. The user can access the correspond-
ing code at http://www.amath.washington.edu/~bernard/papers.html.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=y^2-(x^2-1)(x^2-4)(x^2-9)(x-4):
># define the first place
>P1:=puiseux(f,x=-2,y,0,t)[1];
># define the second place
>P2:=puiseux(f,x=infinity,y,0,t)[1];
># we compute the Abel map from P1 to P2 with 10 digits of
># accuracy
>V:=AbelMap(f,x,y,P1,P2,t,10);

[.4782132267− .6857777356i, .04205771245+ .2852729945i,
.03629471563− .2163228835i]

># We compute the Riemann matrix B, to define the lattice.
>B:=periodmatrix(f,x,y,‘Riemann’):
># Now we reduce. With the option ‘fraction’ the command
># ModPeriodLattice
># returns the coefficients of the linear combination of
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># lattice vectors that is equal to the lattice reduced
># vector.
>W:=ModPeriodLattice(2*V,B,‘fraction’);

[
.99999922115566032, .879 10−7, .99999996924885282, .824 10−7,

.490957264234290476 10−7, .895170631038744930 10−7
]

Up to small errors, these coefficients are all integers, implying that 2V is
indeed a lattice vector.

Example. Recall from Chap. 1, that a divisor on a Riemann surface Γ is
a formal sum of places with multiplicities. A divisor D is written as D =∑

j pjPj , where pjPj denotes that the place Pj has multiplicity pj . The degree
of a divisor is the sum of its multiplicities, denoted degD =

∑
j pj . As an

example, we compute the Abel map of the divisor of a meromorphic function
on a Riemann surface, which has degree 0. By Abel’s theorem, the resulting
Abel map should be a point on the Jacobi lattice.

Consider the Riemann surface defined by

f(x, y) = y8 + xy5 + x4 − x6 . (2.77)

This curve is not hyperelliptic, and has genus 8. We consider a meromorphic
function y which has 6 zeros and 6 poles. The divisor of this functions can be
written in the form (the formal sum of poles and zeros of the function)

D(y) =
(
−1 +

t5

2
, t

)
+
(

1 +
t5

2
, t

)
+
(
−t3, t

)
+ 3

(
t5,−t3

)

−3
(
− 1
t4
,− 1

t3
+

t2

8

)
− 3

(
1
t4
,

1
t3

+
t2

8

)
; (2.78)

we have used truncated Puiseux series to denote the different places in the
divisor. Thus, t is a local parameter near the considered place. Below we define
these points, and compute the Abel map of this divisor. Next, we reduce the
resulting vector modulo the period lattice, to confirm Abel’s theorem for this
example.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f:=y^8+x*y^5+x^4-x^6:
>genus(f,x,y);

8

># define the first place
>P[1]:=[x=-1+t^5/2,y=t]:
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># define the second place
>P[2]:=[x=1+t^5/2,y=t]:
># define the third place
>P[3]:=[x=-t^3,y=t]:
># define the fourth place
>P[4]:=[x=t^5,y=-t^3]:
># define the fifth place
>P[5]:=[x=-1/t^4,y=-1/t^3+t^2/8]:
># define the sixth place
>P[6]:=[x=1/t^4,y=1/t^3-t^2/8]:
># define the multiplicities of all the places
>mult:=[1,1,1,3,-3,-3]:
># a starting point
>P0:=op(allvalues(puiseux(f,x=3,y,0,t))[1]);

P0 := [x = t + 3, y = RootOf( Zˆ8+3 Zˆ5-648,index = 1)]

># Now we compute the Abel map of this divisor
>V:=add(mult[k]*AbelMap(f,x,y,P0,P[k],t,10));

V := [ −1.299153227− 0.6624504705i,−0.2781898109− 0.2041198002i,
1.043210043− 1.236099255i, 0.2796159734+ 0.4278560587i,
0.2308962889+ 1.673495279i, 0.5429291623− 1.575797812i,
−1.300381962+ 0.6826256767i, 0.1436819475+ 0.0356601776i]

># We reduce the vector V modulo the period lattice. First
># we compute the Riemann matrix B, to define the lattice.
>B:=periodmatrix(f,x,y,‘Riemann’):
># Now we reduce.
>W:=ModPeriodLattice(V,B,‘fraction’);

[0.9999998122, 0.9999998812, 0.9999999259,

0.1429633247 10−6, 0.9999994837, 0.9999999613,

0.1218 10−6, 0.5789289936 10−7, 0.9999999395,
0.9999998593, 0.9999999317, 0.9999997945,
0.9999997974, 0.9999997890, 0.9999995188, 0.9999998646]

Up to small errors, these numbers are all integers, implying that V is
indeed a lattice vector.

2.12 Riemann Constant Vector of a Riemann Surface

Often, the Riemann constant vector is first encountered in the context of the
Jacobi inversion problem, that is, the problem of finding a set of g places
P1, . . . , Pg for a given initial place P0 on a Riemann surface Γ of genus g
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such that
∑g
i=1 A(P0, Pi) ≡ z for a given vector z ∈ J(Γ ), see [Dub81]

(here ‘≡’ denotes equal up to periods). Consequently the Riemann constant
vector appears in all formulas determining finite-gap solutions of integrable
equations, see [BBE+94] for examples.

Before continuing, it is convenient to recall the definitions of the Riemann
theta function, the m-th symmetric power of a Riemann surface and the di-
visor of an Abelian differential.

• The Riemann theta function (see Chap. 1) with parametric dependence on
a g × g Riemann matrix B̂ (see Sect. 2.10) is given by

θ : z �→ θ(z|B̂) =
∑

n∈Zg

exp
{

2πi
(

1
2
n · B̂n + z · n

)}
, (2.79)

where z ∈ C
g. Next, we let Θ, known as the theta divisor , denote the

subset of the Jacobian J(Γ ) such that θ(z|B) = 0 for z ∈ Θ. Then the
theta divisor is a complex g− 1 dimensional sub-manifold of J(Γ ) [FK92].

• A divisor D =
∑

j pjPj is called effective (or positive) if all pj are positive.
The set of all effective divisors of degree m on Γ is denoted SmΓ , this is
the m-th symmetric power of Γ .

• The divisor (ν) of an Abelian (or meromorphic) differential ν with zeros at
the places P1, . . . , Pm with multiplicities p1, . . . , pm, and poles at the places
Q1, . . . , Qn with multiplicities q1, . . . , qn is given by (ν) =

∑m
j=1 pjPj −∑n

j=1 qjQj .

Let z = (z1, . . . , zg) ∈ C
g, and assume an initial place P0 is given. Consider

the function φ : Γ �→ C given by

φ(P ) = θ(A(P0, P )− z −KP0) , (2.80)

where KP0 = (K1, . . . ,Kg) is defined componentwise by

Ki =
1 + Bii

2
−
∑

j �=i

∮

aj

(
ωj(P )

∫ P

P0

ωi

)
. (2.81)

If φ is not identically zero on Γ , then it has g zeros P0, . . . , Pg and, up to
permutation, these zeroes uniquely solve the Jacobi inversion problem. This
is the Riemann Vanishing Theorem [Dub81]. The vector KP0 is called the
Riemann constant vector with initial place P0. The algorithm to compute the
Riemann constant vector for an arbitrary place P0 on a Riemann surface does
not use formula (2.81), which is computationally too expensive. Instead, it
relies on the two ideas described below.

• Given the divisor D = (ν) of an Abelian differential ν and any initial place
P0 ∈ Γ , the Abel map of the divisor is such that [FK92]

−A(P0,D) ≡ 2KP0 , (2.82)
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where the Abel map A(P0,D) of a divisor D =
∑

i piPi is defined addi-
tively: A(P0,D) =

∑
i piA(P0, Pi). For convenience, denote by HΓ the set

of half lattice vectors in J(Γ ). That is,

HΓ =
{

h ∈ J(Γ ) : h =
�

1
2
M +

1
2
B N

�
, M ,N ∈ Z

g

}
, (2.83)

where �z� is the vector z ∈ Z
g reduced modulo the period lattice Λ.

We denote the elements of HΓ by hi and assume h1 is the zero vector
with 2g components. Using this notation, the equivalence relation (2.82)
is rewritten as

−1
2
A(P0,D) + hi = KP0 , (2.84)

for an appropriate vector hi ∈ HΓ chosen from the 22g elements of HΓ .
Let us summarize: the above equation provides us with a finite number of
possibilities for the Riemann constant vector. How do we select the correct
one? The next paragraph provides a way to characterize the Riemann
constant vector.

• Irrespective of the initial place P0, the Riemann constant vector KP0 is
defined (see [FK92] and Chap. 1) via the theta divisor, i.e., the set of all
z ∈ J(Γ ) with θ(z) = 0 through the relation

z ≡A(P0,D) + KP0 , (2.85)

with the divisor D ∈ Sg−1Γ . Substituting D = (g− 1)P0 in (2.85) demon-
strates that θ(KP0) = 0 for all P0 ∈ Γ .

Once the Riemann constant vector of any place P0 on Γ is known, the
Riemann constant vector of any other place P ′

0 may be computed using the
formula

KP ′
0
≡ KP0 − (g − 1)A(P0, P

′
0) . (2.86)

Specifically, to compute KP0 we first compute KQ, where, as before, Q is
the place on the first sheet above the base point. Next, we compute the Abel
map A(P0, Q). Then the desired Riemann constant vector is a simple vector
sum. The algorithm to compute the Riemann constant vector κ of Q ∈ Γ is
outlined below. The general idea is to use the fact that there is exactly one
vector h ∈ HΓ such that θ(κ + h + A(Q,D)) = 0 for all D ∈ Sg−1Γ . We use
the following steps:

1. Compute the Riemann matrix associated with Γ as discussed in Sect. 2.10.
2. Calculate the divisor (ω) of one of the holomorphic (Abelian of the first

kind) differentials ω from Sect. 2.9. To do this, consider the holomorphic
differential ω and a place Q specified as a Puiseux expansion using the local
coordinate t. The place Q is an element of the divisor (ω) with multiplicity
q if near Q the differential ω has the representation ωQ = tq h(t)dt, where
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h(t) is locally holomorphic and h(0) 	= 0 [Gri89]. Such places occur only
for a finite number of x-values, since a holomorphic differential has exactly
2g − 2 zeros. Three groups of places are checked for membership in (ω):
(a) The intersection points of P (x, y) = 0 with f(x, y) = 0, where

ω = P (x, y)dx/∂yf(x, y). These are the obvious candidates for the
zeros of ω. This is done by calculating the resultant (2.24) of P (x, y)
and f(x, y) to eliminate y and to obtain a polynomial equation in
x only. Using Puiseux expansions, places consisting of the roots of
this equation and their corresponding y values are substituted in ω to
determine their multiplicity.

(b) The places corresponding to the problem points defined in Sect. 2.7.
Recall that the problem points include branch points, singular points,
and the roots of an(x) = 0. These points may be zeros of ω, due
to the presence of the differential dx in ω. As above, substitution of
the Puiseux expansions at these places allows us to determine the
multiplicity (possibly zero) of zeros of the Abelian differential ω.

(c) Places at infinity. These are treated in a different set of coordinates
as usual, following from their description in terms of homogeneous
coordinates. Their multiplicities are determined as above.

3. Compute the initial candidate for the Riemann constant vector, κ, given
by

κ=
1
2
A(Q, (ω)) + h1 =

1
2
A(Q, (ω)) . (2.87)

Using this first candidate, all other candidates are constructed as κ + hi
for some i ∈ {2, . . . , 22g}.

4. Using the methods of [DHB+04], we construct Tε(z), an approximation for
θ̂(z|B̂) (the oscillatory part of the Riemann theta function, see [DHB+04])
such that |Tε(z)− θ̂(z|B̂)| ≤ ε.

5. For each of the 22g possible choices for hi, compute τi = |Tε(κ + hi)|,
the approximate absolute value of the oscillatory part of the θ-function
evaluated at the candidate Riemann constant vector associated with hi.
By (2.85) and the theorem on the uniform approximation for theta func-
tions from [DHB+04], if τ > ε, the candidate is eliminated from the list
of potential Riemann constant vectors.
Note that ε in Step 4 is chosen to be fairly large (to minimize the evaluation
time of Tε), but sufficiently small to eliminate a relatively large number of
candidates. This choice is made heuristically, as obtaining the statistics for
arbitrary θ-function values needed for a better choice is computationally
more expensive than evaluating Tε a number of 22g times required for this
part of the algorithm.

6. If Step 5 did not eliminate all but one candidate Riemann constant vector,
further elimination is required. To this end we choose g−1 arbitrary places
P1, . . . , Pg−1 ∈ Γ . A sequence D1,D2, . . . of effective, degree g−1 divisors
is formed from these places. If hi is the correct half-lattice vector, then
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by (2.84), θ(κ + hi + A(Q, Dj)) = 0 for all Dj ∈ D1,D2, . . .. Thus,
beginning with j = 1 and incrementing j as needed, we compute τi =
|Tε(κ + hi + A(Q,Dj))| for all remaining candidates κ + hi, eliminating
those for which τi ≥ ε. With each such check, the probability that there
remain several h ∈ HΓ drops, as Θ is a g − 1 complex-dimensional sub-
manifold of the g complex-dimensional manifold J(Γ ). In other words, the
algorithm succeeds with probability 1. However, if several candidates are
retained, the algorithm returns a corresponding error message. Otherwise
the algorithm has found exactly one candidate κ+hi ∈ Θ: this is κ = KQ.

The vector KQ depends only on choices that are made algorithmically,
namely the choice of homology basis and the base place Q (a place covering the
base point). Permuting the holomorphic differentials basis induces the same
permutation on the indices of KQ, A and B̂. This is a trivial dependence as
it is a mere reordering of the coordinates of C

g, or alternatively, of J(Γ ).
The “algcurves” package of Maple 11 does not contain an implementation

of the algorithm discussed here to compute the Riemann constant vector. How-
ever, such an implementation should be included in the release of Maple 12.

The following examples work with the RiemannConstants command as if
it were a regular part of the “algcurves” package already.

Example. We compute the vector of Riemann constants for two places on
the genus 2 curve defined by y3 + 2x7 − x3y = 0.

>with(algcurves):
># define the algebraic curve
>f:=y^3+2*x^7-x^3y:
># define the initial place
>P0:=puiseux(f,x=0,y,0,t)[1];

[
x = t2, y = t3

]

># we compute the Riemann constant vector for P0
># asking for 5 digits of accuracy
>K:=RiemannConstants(f, x, y, P0, 5);

K := [.954915388 10−1− .2938926454i,−.5000000019+ .5877852634i]

># we compute the Riemann matrix B, to define the lattice
>B:=periodmatrix(f,x,y,‘Riemann’):
># we compute the oscillatory part of the
># Riemann theta function evaluated at K; []denotes that no
># derivatives of the theta function are computed, .001 is

the
># prescribed error estimate for the neglected terms in
># the theta series
>RiemannTheta(K, B, [], .001, output = list)[2];
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1

2

3

4

5

x

−20 −18 −16 −14 −12 −10

10−7 |T|

Fig. 2.10. The absolute value of the oscillatory part Tε of the Riemann theta
function evaluated at vectors K0+(g−1)A(A1, Pi) as a function of the x coordinate
of Pi. The choice of the points Pi is discussed in the main text

.6372315 10−7− .1058378153 10−7i

># RiemannConstants may also be called with the flag ‘ZERO’
># which computes the Riemann constant vector of the
># place A_{1} on sheet one above the base point chosen by

the
># monodromy procedure
>K0:=RiemannConstants(f, x, y, ‘ZERO’, 5);

K0 := [−.1300434055− .4090318795i,−.4799342464+ .4016561674i]

># the oscillatory part of the Riemann theta function
># evaluated at K0
>RiemannTheta(K0, B, [], .001, output = list)[2];

−.9139985751 10−6− .1478028554 10−5i

The fact that the absolute values of the oscillatory parts of the Riemann
theta function computed in the previous example are small provides no ver-
ification that the correct Riemann constant vector has been obtained, since
the algorithm chooses the candidates for the Riemann constant vector with
exactly this property. To obtain an independent check, we need to verify that
the difference, up to numerical error, between the Abel map of the (g − 1)-th
symmetric power and of the theta divisor is indeed equal to our choice for the
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Riemann constant vector for a set of points on the Riemann surface. This is
shown in Fig. 2.10. As both Sg−1Γ and Θ are strictly lower dimensional sub-
manifolds of J(Γ ), this demonstrates that the Riemann constant vector was
chosen almost surely correct. An approximation of this offset at several arbi-
trarily chosen points on Γ is computed as follows: we compute a discrete set of
points on the genus 2 Riemann surface Γ arising from y3 + 2x7− x3y = 0: we
lift the regular points (−20,−18.75,−16.25,−13.75,−11.25,−10), all on the
arbitrarily chosen straight line from −20 to −10 in C, to the places P1, . . . , P6

on the first sheet. Next, we compute Vi = K0+(g−1)A(base, Pi), where base
is the place on Γ chosen during the computation of the monodromy and K0
is the Riemann constant vector of base computed in the previous example.
In Fig. 2.10 we show the points (xi, |T (Vi)|), where xi is the x-coordinate of
place Pi and T is the approximate absolute value of the oscillatory part of the
Riemann theta function. Small numerical error aside, the vectors Vi are in Θ,
thus providing numerical confirmation of the correctness of K0.

Appendix

All of the algorithms discussed in the previous sections of this chapter are gen-
eral in the sense that they apply to all compact connected Riemann surfaces
with an exact representation of the coefficients in the defining equation for
the algebraic curve. In this appendix, we discuss the use of a few algorithms
that apply to restricted classes of algebraic curves and Riemann surfaces, such
as elliptic and hyperelliptic surfaces. This appendix contains many examples,
but no detailed explanation of the specifics of the algorithms.

1. Parameterizing a Plane Algebraic Curve of Genus Zero

If the genus of an algebraic curve is zero, then this curve can be parame-
terized in terms of rational functions [Gri89]. A method to construct such
a parametrization was given by van Hoeij in [vH97]. This method is imple-
mented as the parametrization command in the “algcurves” package. An
example of its use is presented below.

Example. Consider the algebraic curve defined by

f = y5 + 2y4x− 4x4 . (2.88)

The genus of this curve is zero. We use the parametrization command to
compute a rational parametrization of the algebraic curve in terms of a pa-
rameter t. If the genus of the algebraic curve is not zero, an error is returned.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
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>f:=y^5+2*y^4*x-4*x^4:
># calculate a rational parametrization for the
># algebraic curve defined by f using a parameter t
>parametrization(f,x,y,t);

[
4

t4(2 + t)
,

4
t3(2 + t)

]

2. When is an Algebraic Curve Hyperelliptic?

An algebraic curve of genus at least 2 is called hyperelliptic if there exists a
holomorphic mapping of degree 2 from the curve into the extended complex
plane [Gri89]. In practice, hyperelliptic curves stand out from other algebraic
curves in the sense that many of their properties resemble those of elliptic
curves, including how they may be represented: a hyperelliptic curve is bira-
tionally equivalent to a curve of the form

v2 = P2g+1(u) , (2.89)

where P2g+1 is a polynomial of degree 2g + 1. This is discussed in the next
section. All curves of genus 2 are hyperelliptic [Gri89], but generically, curves
of higher genus are not hyperelliptic. A theorem of Max Noether [Noe83]
allows one to check when a plane algebraic curve is hyperelliptic, from the
knowledge of its holomorphic differentials: let

{f1(x, y)dx, . . . , f2(x, y)dx} (2.90)

denote the set of holomorphic differentials on Γ̂ , defined by f(x, y) = 0. Next,
one forms the quadratic combinations

{fi(x, y)fj(x, y), i, j = 1, . . . , g} . (2.91)

For a hyperelliptic algebraic curve, exactly 2g−1 of these functions are linearly
independent. For non-hyperelliptic curves, the number of linearly independent
functions in the set (2.90) is greater than 2g−1. Noether’s theorem was used by
van Hoeij to implement the “algcurves” command is hyperelliptic, which
determines whether a given plane algebraic curve is hyperelliptic or not.

Example. In this example, we use the is hyperelliptic command to check
whether three plane algebraic curves are hyperelliptic. The first curve has
genus 2, thus is hyperelliptic. The next curve has genus 3, and is not hyper-
elliptic. The last curve has genus three, but is hyperelliptic.

># load the algcurves package
>with(algcurves):
># define the first algebraic curve
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>f1:=y^3-2*x*y+x^4:
># define the second algebraic curve
>f2:=y^3-2*x*y+x^5:
># define the third algebraic curve
>f3:=y^9+3*x^2*y^6+3*x^4*y^3+x^6+y^2:
># the genus of the first curve
>genus(f1,x,y);

2

># thus, the curve is hyperelliptic
>is_hyperelliptic(f1,x,y);

true

># the genus of the second curve
>genus(f2,x,y);

3

># this curve is not hyperelliptic
>is_hyperelliptic(f2,x,y);

false

># the genus of the third curve
>genus(f3,x,y)

3

># this curve is, in fact, hyperelliptic
>is_hyperelliptic(f3,x,y);

true

3. The Weierstrass Form of a Hyperelliptic Algebraic Curve

If an algebraic curve is (hyper)elliptic, it is birationally equivalent to (2.89),
which is known as the Weierstrass form of the hyperelliptic curve. An algo-
rithm to construct the Weierstrass form for an elliptic curve was devised by
van Hoeij [vH95], and later extended to hyperelliptic curves. A Maple imple-
mentation of this algorithm is available in the form of the Weierstrassform
command in the “algcurves” package. We illustrate its use below.

Example. We use the Weierstrassform command to construct the Weier-
strass form of the hyperelliptic plane algebraic curve defined by f3(x, y) in
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the previous example. The Weierstrass form will be expressed in terms of two
new coordinate functions u and v. These are rational functions of x and y.
Their inverse x(u, v) and y(u, v) are also rational, and explicitly provided by
the algorithm.

># load the algcurves package
>with(algcurves):
># define the algebraic curve
>f3:=y^9+3*x^2*y^6+3*x^4*y^3+x^6+y^2:
># the Weierstrass form
>wf:=Weierstrassform(f3,x,y,u,v):
>wf[1];

v2 + 2− 7 ∗ u− 35u3 + 21u2 + 35u4 − 21u5 + 7u6 − u7

>wf[2]; # u(x,y)

y
(
x2 + y3 + 1

)

y + x4 + 2x2y3 + y6

>wf[3]; # v(x,y)

−
x
(
x2 + y3

)

y

>wf[4]; # x(u,v))

−(−1 + u)v

>wf[5]; # y(u,v)

1− 3u + 3u2 − u3
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3.1 Introduction

In the previous chapter, a detailed description of the algorithms for the
‘algcurves’ package in Maple was presented. As discussed there, the pack-
age is able to handle general algebraic curves with coefficients given as exact
arithmetic expressions, a restriction due to the use of exact integer arithmetic.
Coefficients in terms of floating point numbers, i.e., the representation of dec-
imal numbers of finite length on a computer, can in principle be handled, but
the floating point numbers have to be converted to rational numbers. This can
lead to technical difficulties in practice. One also faces limitations if one wants
to study families of Riemann surfaces, where the coefficients in the algebraic
equation defining the curve are floating point numbers depending on a set
of parameters, i.e., if one wants to explore modular properties of Riemann
surfaces as in the examples discussed below. An additional problem in this
context can be computing time since the computation of the Riemann ma-
trix uses the somewhat slow Maple integration routine. Thus, a more efficient
computation of the Riemann matrix is interesting if one wants to study fami-
lies of Riemann surfaces or higher genus examples which are computationally
expensive.

Modular properties of Riemann surfaces are of interest in many fields of
mathematics and physics. Numerical methods can be helpful to explore re-
lated questions and to visualize the results. Examples in this context are
determinants of Laplacians on Riemann surfaces which appear for instance
in conformal field theories, see [QS97] for an overview. Interesting related
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questions are the existence of extremal points of the determinants and their
global properties. A numerical study of these aspects for the determinant of
the Laplacian in the Bergman metric on Riemann surfaces of genus 2 was
presented in [KKK09]. The surfaces of genus 2 are known to be all hyper-
elliptic which simplifies the analysis, but the modular space has already six
real dimensions. Thus, a numerical study of modular spaces requires efficient
algorithms even in low genus.

The modular dependence of Riemann surfaces is also important in the
asymptotic description of so-called dispersive shocks, highly oscillatory re-
gions in solutions to purely dispersive equations such as the Korteweg-de Vries
(KdV) and the nonlinear Schrödinger equation (NLS). These equations have
almost periodic solutions in terms of multi-dimensional theta functions as-
sociated to hyperelliptic Riemann surfaces whose branch points are constant
with respect to the physical coordinates. Since the dispersionless equations
corresponding to KdV and NLS have shock solutions, the limit of small dis-
persion leads to rapidly modulated oscillations in the solutions in the vicinity
of these shocks. According to Lax and Levermore [LL83], Venakides [Ven85]
and Deift, Venakides and Zhou [DVZ97], the asymptotic description of the
rapidly modulated oscillations in the dispersive shock is given by the exact
solution to the KdV equation on a family of elliptic surfaces, where, how-
ever, the branch points depend on the physical coordinates via the Whitham
equations [Whi66, Whi74]. A numerical implementation for these so-called
single phase solutions was given in [GK07]. Multiphase solutions arising in
the asymptotic description of solutions to initial data with several extrema
are given in terms of hyperelliptic KdV solutions, see [GT02]. A numerical
analysis of such cases would imply the use of an efficient code for fami-
lies of hyperelliptic curves as given in [FK06]. In the asymptotic descrip-
tion of dispersive shocks for the focusing NLS equation, hyperelliptic curves
appear generically, see [KMM03, TVZ04]. In the case of the Kadomtsev–
Petviashvili (KP) equation [KP70], a completely integrable 2+1-dimensional
generalization of the KdV equation, exact algebro-geometric solutions can
be constructed on arbitrary compact Riemann surfaces, see e.g. [BBE+94].
It is unclear which surfaces appear in the asymptotic description of disper-
sive shocks in the KP equation as numerically studied in [KSM07]. Possi-
bly modular properties of non-hyperelliptic surfaces will play a role in this
context.

Families of hyperelliptic curves, where the branch points depend on the
physical coordinates, also appear in exact solutions for the Ernst equa-
tion. This equation has many applications in mathematics such as the the-
ory of Bianchi surfaces, and physics such as general relativity, see [KR05]
for references. Hyperelliptic solutions to the Ernst equation were found by
Korotkin [Kor89]. A numerical implementation of these solutions was given in
[FK01, FK04]. The Einstein–Maxwell equations in the presence of two com-
muting Killing vectors are equivalent to the electro-magnetic Ernst equations.
The latter have solutions on three-sheeted coverings of CP 1 (which are in
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general not hyperelliptic) with branch points depending on the physical coor-
dinates, see [Kor89,Kle03].

To be able to study numerically modular properties of Riemann surfaces,
an efficient implementation of the algorithms with floating point coefficients
would therefore be helpful. Such an approach can use similar algorithms as a
symbolic approach, but faces specific problems due to the inexact represen-
tation of the coefficients in the algebraic equations defining the curves. We
present here a Matlab implementation which can basically handle the same
tasks as the ‘algcurves’ package, but which uses the numerically optimal in-
tegration procedure, the Gauss quadrature. Matlab has access to symbolic
computation by calling Maple, but this requires the presence of the latter and
the Matlab Symbolic Math Toolbox. To obtain a standalone version and to
allow for maximal efficiency, we do not use any symbolic computation here.
To the best of our knowledge this is the first purely numerical approach to
general algebraic curves [FK09]. Since the algorithms of the algcurves package
were discussed in detail in the previous chapter, we will concentrate here on
different approaches and on Matlab specific adaptions.

The chapter is organized as follows: In Sect. 3.2 we determine the critical
points of an algebraic curve, i.e., branch points and singular points, via the
multroot package. These points appear in our finite precision approach as
zeros of a polynomial with inexact coefficients. Dealing with such polynomials
is numerically a delicate problem. In the Maple implementation (see Chap. 2)
this difficulty is avoided by the use of exact arithmetic. Here we use the Mat-
lab package multroot which provides an efficient way to deal with zeros of
polynomials with inexact coefficients. In Sect. 3.3 we compute the Puiseux
expansions at the singular points via the Newton polygon. These expansions
are used in Sect. 3.4 to determine a basis of the holomorphic one-forms. The
monodromy of the algebraic curve is determined in Sect. 3.5 in a similar way
as in Maple: the algebraic equation for the curve is solved at a set of points
on contours avoiding the critical points. These points are those appearing in
the numerical integration, the collocation points of the Gauss quadrature. The
computation of the integrals of the holomorphic differentials is then only a ma-
trix multiplication at negligible computational cost. A canonical basis of the
homology is found in Sect. 3.6 via the Tretkoff–Tretkoff algorithm [TT84] as in
Maple. The periods of the holomorphic 1-forms are computed for this basis. In
Sect. 3.8 we discuss the numerical performance and convergence properties in
dependence of the numerical resolution in the integration. Since the computa-
tional cost turns out to be mainly due to the solution of the algebraic equation
on the collocation points, the algorithm is considerably more efficient in cases
where the equation can be solved explicitly as for hyperelliptic curves. Since
the latter appear in many applications, we present a code to deal with general
hyperelliptic curves in Sect. 3.9. In Sect. 3.10 we use the characteristic quan-
tities of the Riemann surface such as the Riemann matrix obtained above to
compute multi-dimensional theta functions. This allows for an efficient com-
putation of solutions to certain completely integrable equations as NLS, which
we discuss as an example in Sect. 3.11.
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3.2 Branch Points and Singular Points

All compact Riemann surfaces can be represented as compactifications of non-
singular algebraic curves (see Chap. 1 [Bob11]). As in the previous chapters
we consider plane algebraic curves C defined as a subset in C

2, C = {(x, y) ∈
C

2|f(x, y) = 0), where f(x, y) is an irreducible polynomial in x and y,

f(x, y) =
M∑

i=1

N∑

j=1

aijx
iyj =

N∑

j=1

aj(x)yj . (3.1)

We assume that not all aiN vanish and that N is thus the degree of the
polynomial in y. The degree in x and y, i.e., the maximum of i + j for non-
vanishing aij is denoted by d.

In this chapter we will always study the Riemann surface arising from
solving (3.1) for y. In general position, for each x there are N distinct solutions
yn corresponding to the N sheets of the Riemann surface. At the points where
fy(x, y) vanishes, there are less than N distinct solutions and thus less than
N sheets. These points are either branch points or singularities. The points
where f(x, y) = 0 and fy(x, y) = 0 are given by the zeros of the resultant R(x)
of Nf − fyy and fy, the discriminant of the curve. The resultant is given in
terms of the 2N × 2N Sylvester determinant; for the explicit form see (2.24)
in Chap. 2.4 .

The algebraic curve is completely characterized by the matrix aij in (3.1),
which is one reason why a matrix-based language such as Matlab is con-
venient for a numerical treatment of algebraic curves. Each entry in the
Sylvester determinant is one of the functions aj(x) =

∑M
i=1 aijx

i depend-
ing on x and thus by itself a vector of length M . Therefore, the computation
of the determinant involves convolutions of these vectors which are known
to be equivalent to products in Fourier space. To compute the resultant, we
build the Sylvester determinant of the discrete Fourier transforms of the vec-
tors an = (a1n, . . . , aMn)T . Each vector in this determinant is divided by N
for numerical reasons. The determinant is obtained in Fourier space, and the
resultant follows from this via an inverse Fourier transform.

The roots of the resulting polynomial give the x coordinates of the points,
where f(x, y) = fy(x, y) = 0. Since, in contrast to Maple, we use finite pre-
cision arithmetic, rounding errors occur. We will thus round all numerical
results to a certain number of digits which are limited by the machine pre-
cision in Matlab.1 Typically we aim at a precision Tol which can be freely
chosen between 10−10 and 10−14.

1 Matlab works with double precision, i.e., with 16 digits; thus, machine precision
is typically limited to the order of 10−14 because of rounding errors.
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Root finding in Matlab is possible via the roots function. It uses efficient
algorithms to find the eigenvalues of the so-called companion matrix, i.e., the
matrix which has the studied polynomial as the characteristic polynomial. The
eigenvalues are determined to machine precision which does not mean, how-
ever, that the zeros of the polynomial with coefficients within roundoff error
are determined with machine precision. Problems occur if there are multiple
roots or roots which are almost identical. It is well known that the computa-
tion of multiple roots is a long standing numerical challenge, see for instance
[Zen04] for references. The most common approaches in this context use mul-
tiprecision arithmetic, i.e., more than 16 digits, and need exact coefficients of
the polynomials. However, if the coefficients of the polynomials are not exact,
but obtained by truncating the floating point numbers, this will inhibit the
identification of the correct multiple roots. Finite precision in the coefficients
of the polynomial turns multiple roots into clusters of simple roots. Consider
for example the case of the Klein curve, the curve of lowest genus with the
maximal number of automorphisms, in the form

y7 = x(x− 1)2 . (3.2)

The resultant for this curve has the form R(x) = x6(x− 1)12. After rounding,
our procedure gives the correct coefficients of the polynomial up to machine
precision, but instead of the root at 1 with multiplicity 12 roots(R(x)) re-
turns the following cluster of roots,

1.1053 + 0.0297i
1.1053 - 0.0297i
1.0736 + 0.0790i
1.0736 - 0.0790i
1.0224 + 0.1032i
1.0224 - 0.1032i
0.9686 + 0.0980i
0.9686 - 0.0980i
0.9264 + 0.0686i
0.9264 - 0.0686i
0.9037 + 0.0245i
0.9037 - 0.0245i,

a result which is obviously useless for our purposes.
This means that in our fully numerical approach to algebraic curves we

need a reliable way to find the zeros of a polynomial with non-exact coef-
ficients. Such a way exists in the form of Zeng’s Matlab package multroot.
As discussed in more detail in [Zen04], two algorithms are used by multroot
to achieve this goal: The first algorithm identifies tentatively the multiplic-
ity of the roots, the second uses a Newton iteration to determine the roots
corresponding to this multiplicity structure to machine precision. The code
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provides an estimation of the forward and backward error2 and varies with the
multiplicity structure to minimize the backward error. The multroot package
is very efficient. For the above example of the Klein curve (3.2), it finds the
two zeros 0 and 1 with multiplicity 6 and 12, respectively. Rounding is impor-
tant in this context. The standard way to call multroot is with a precision of
10−10 of the coefficients, which is what we do. This can be changed if needed
by hand, which is also possible for certain control parameters in the iteration
as explained in the multroot [Zen04] documentation to which the reader is
referred for details.

If the coefficients of the studied polynomials reach the order of 1010 or
if the degree of the polynomials gets very high (of the order of 100), the
restriction to machine precision in Matlab imposes obvious limitations on the
possibility to identify the correct roots. This is typically the case for curves
with singularities of high order. In these situations, which are beyond what
we want to study here, the ratio of the estimated forward to backward error
will be high, and the results for the roots will not be reliable. If this ratio is
greater than 103, a warning will be given. The code will still try to compute
the characteristic quantities of a Riemann surface, but will in general fail to
produce correct results. In certain cases a modification of the input parameters
of multroot will lead to the correct multiplicity of the roots. An alternative is
to provide the correct roots of the resultant, for instance via a mixed symbolic
and numerical approach, and to continue the computation with these (to this
end one has to provide a vector with the zeros of the resultant and a vector
with the singular points). The code will also produce a warning if the ratio of
smallest to largest distance between two roots is smaller than 10−3 since this
might lead to accuracy problems in the ensuing computation.

An approach to algebraic curves based on finite precision floating point
numbers obviously faces limitations, but as we will show in the following, these
restrictions are not severe. All singular points correspond to multiple roots of
the resultant. We are mainly interested in the study of modular properties
of generic Riemann surfaces of low genus, i.e., of curves which are regular or
do not have singularities corresponding to zeros of very high multiplicity of
the resultant. In these cases the purely numerical approach presented here
works well and is considerably more efficient than mixed symbolic-numeric
approaches.

Given the multiplicity of the roots of the resultant, the code determines
the singular points, i.e., the points with f(x, y) = fx(x, y) = fy(x, y) = 0.
All roots xs with a multiplicity greater than one are tested in this context:
the equation fy(xs, y) is solved via multroot for y. For every root y

(n)
s with

f(xs, y
(n)
s ) = 0, it is checked whether fx(xs, y

(n)
s ) = 0. All computations are

2 As usual the forward error for the approximation of the value of a function k(x) at
some given point x via an approximate function k̃(x) is defined as the difference
k(x)− k̃(x); the backward error is defined as the difference x̃− x, where x̃ is the
value for which k(x̃) = k̃(x).
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carried out with the prescribed precision Tol, and the check whether a relation
for a given root is satisfied is carried out with a precision Tol ∗ 102 to take
care of a loss of accuracy due to rounding. In this way we find all finite branch
points (the zeros of the resultant) and singularities unless multroot produced
a warning.

To determine the singular behavior of the curve f(x, y) = 0 at infinity, we
proceed similarly as the Maple package: we introduce homogeneous coordi-
nates X,Y, Z via x = X/Z, y = Y/Z in (3.1) and get

F (X,Y, Z) = Zdf(X/Z, Y/Z) = 0 . (3.3)

Infinite points of the algebraic curve are given by Z = 0, for the finite points
one can choose Z = 1. Singular points at infinity satisfy FX(X,Y, 0) =
FY (X,Y, 0) = FZ(X,Y, 0) = 0. We first check for such points with Y 	= 0
which implies we can put Y = 1 without loss of generality. The roots of
FX(X, 1, 0) = 0 are determined via multroot. It is then checked as above
whether they also satisfy FY (X, 1, 0) = 0 and FZ(X, 1, 0) = 0. This analy-
sis identifies all singular points with Y 	= 0, but not the ones with Y = 0
and X 	= 0. In the latter case we can put X = 1 and check whether
FX(1, 0, 0) = FY (1, 0, 0) = FZ(1, 0, 0) = 0. The singularities are given by
the code in homogeneous coordinates in the form sing = [Xs, Ys, Zs].

In what follows we will always consider the curve

f(x, y) = y3 + 2x3y − x7 = 0 , (3.4)

which was already analyzed in the previous chapter as an example for the
various aspects of the code, if necessary complemented by further curves. For
(3.4) we find the finite branch points3

bpoints =
-0.3197 - 0.9839i
0.8370 - 0.6081i

-1.0346
0
0.8370 + 0.6081i

-0.3197 + 0.9839i

and two singularities,

sing =
0 0 1 4
0 1 0 9

corresponding to x = y = 0 and Y = 1, X = Z = 0. The last column
corresponds to the delta invariant at the respective singularity, for a definition
of which we refer to the previous chapter and a more detailed explanation
below.
3 For the ease of representation we only give 4 digits here though Matlab works

internally with 16 digits.
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3.3 Puiseux Expansions

To desingularize an algebraic curve, i.e., to obtain an atlas of local coordinates
for the Riemann surface corresponding to the algebraic curve, we use series
y(x) with rational exponents in the vicinity of the singular point, just as in
the previous chapter. These Puiseux expansions are calculated up to the order
necessary to identify all sheets of the Riemann surface near the singularities.
They are used as local coordinates in the vicinity of these points which will
provide part of an atlas for the description of the Riemann surface as a smooth
manifold. The procedure is analogous to the introduction of local coordinates
at infinity for the example of hyperelliptic curves in Sect. 1.1.1.

We can restrict the analysis to singularities at (0, 0) for the following rea-
son: For a singular point (xs, ys), we consider the curve f̃(x̃, ỹ) = 0 obtained
from f(x, y) = 0, where f̃(x̃, ỹ) = f(xs+x̃, ys+ ỹ). The curve f̃(x̃, ỹ) = 0 obvi-
ously has a singular point at (0, 0). At infinity we consider Puiseux expansions
in the homogeneous coordinates with the same approach. For the following
considerations we will drop the tilde and assume that (0, 0) is a singular point
of the algebraic curve given by f(x, y) =

∑
n,m anmxnym = 0. We write the

Puiseux expansions in the form

x = tr , y = α1t
s1(1 + α2t

s2(1 + α3t
s3(1 + . . .))) , (3.5)

where r, s1, s2, . . . ∈ N, and where αi ∈ C for i = 1, 2, . . .. Let y = 0 be a zero
of order m for the equation f(0, y) = 0. To identify all sheets in the vicinity
of the singular point (0, 0), m inequivalent expansions of the form (3.5) are
needed:

x = tr
(n)

, y = α
(n)
1 ts

(n)
1 (1 + α

(n)
2 ts

(n)
2 (1 + α

(n)
3 ts

(n)
3 (1 + . . .))) , (3.6)

n = 0, 1, . . . ,m, where r(n), s
(n)
1 , s

(n)
2 , . . . ∈ N, and where α

(n)
i ∈ C for i =

1, 2, . . . and n = 0, 1, . . . ,m. We define the singular part of a Puiseux expansion
as the part of the series up to the order where all sheets in the vicinity of the
singularity are uniquely identified, i.e., the terms in (3.6) up to the ts

(n)
i with

the smallest index i such that there are m distinct values for the corresponding
α

(n)
i .

In Maple one obtains the singular part by the command

puiseux(f,x=0,y,0,t).

Although our implementation is in principle suited to give arbitrary orders
of the Puiseux expansion, we will only need the singular part to determine
the holomorphic differentials on the Riemann surface. Therefore, we will not
consider higher orders in the series. In the code, the expansion is done via
the Newton polygon, the convex hull of the points (k, l) in R

2 such that the
coefficients akl from (3.1) do not vanish as explained in the previous chapter.
For the Puiseux expansion we need only the part of the polygon between the
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axes and lines with negative slope closest to them. This is conveniently done
by treating the points with non-vanishing akl as points zj = k + il in the
complex plane.

To construct the polygon, we start with the point zj0 with smallest imag-
inary part among those with smallest real part. Then the code finds the next
vertex of the polygon by considering the argument of the difference zj − zj0 ;
the minima of these values in [−π/2, 0] gives the vertex. The procedure is
iterated until the horizontal axis is reached or until there is no more vertex
found. The slopes of these lines are equal to r(n)/s

(n)
1 in (3.6). From these one

obtains r(n) and s
(n)
1 uniquely by choosing them to be coprime. To obtain the

values of α(n)
1 , we substitute x = tr

(n)
and y = α

(n)
1 ts

(n)
1 in f(x, y) = 0. The

lowest order terms in t must vanish in the resulting equation which leads to
a polynomial relation for the α

(n)
1 . This relation is solved as in the previous

section with multroot.
We are interested here only in the values of α

(n)
1 which are non-zero. If

the number of distinct non-zero α
(n)
1 obtained in this way for all the edges of

the part of the Newton polygon considered here is equal to m (the order of the
zero at y = 0 in f(x, y) = 0), the singular part of the Puiseux expansion is
identified. If not, we put

x = x̂r
(n)

, y = α
(n)
1 x̂s

(n)
1 (1 + ŷ) (3.7)

in f(x, y) = 0 and obtain the algebraic curve f̂(x̂, ŷ) = 0 which is again
singular at (0, 0). With this curve we proceed as before to construct the New-
ton polygon and to find the Puiseux expansions of the form x̂ = tr̂

(n)
and

ŷ = α
(n)
2 ts

(n)
2 + . . .. The procedure is iterated until the singular part of the

Puiseux expansion for the original curve f(x, y) = 0 is identified.

Remark 1. Duval [Duv89] gave an algorithm for rational Puiseux expansions,
i.e, expansions with rational α(n)

i . Since we are here interested in an entirely
numerical approach, rational Puiseux expansions do not offer an advantage
even in cases where they are applicable. Notice that the exponents r(n) and
s
(n)
i are determined exactly nonetheless since they are integers. Accuracy prob-

lems appear when the algebraic curve has to be transformed in the course of
the computation: first when the singularity is not at (0, 0), and second when
one goes to higher order in the Puiseux expansions. In both cases binomial
coefficients appear in the expansion of terms of the form (x + xs)N which
grow rapidly with N . Since we work with double precision, the unavoidable
numerical errors in (xs, ys) and in the α

(n)
i require careful rounding: typically

one loses a factor N in accuracy for each of the above transformations. This
means one has to round roughly to the order Tol∗ 10s, where s is the number
of transformations performed. Obviously in a purely numerical double preci-
sion setting, the available precision of 16 digits thus will eventually limit the
attainable accuracy for singularities of high order, at least once Tol∗ 10s is of
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the order of 1. This is why the mixed symbolic-numeric approach to Puiseux
expansions by Poteaux [Pot07] requires exact knowledge of the singularities
and the coefficients of the curve and a multiprecision arithmetic. Such high
order singularities are, however, not generic and beyond the scope of our ap-
proach. The rapid growth of the degree of the polynomial f̂(x̂, ŷ) obtained
via successive transformations of the form (3.7) in f(x, y) = 0, and thus the
size of the matrices âkl in (3.1) corresponding to f̂(x̂, ŷ) on the other hand
is of less importance, since the resulting matrices are sparse (which means
they have mainly entries with value 0), and since Matlab provides efficient
algorithms for sparse matrices.

The output (a variable called PuiExp) for the Puiseux expansions proce-
dure is written in the form [r(n), s

(n)
1 , α

(n)
1 , s

(n)
2 , α

(n)
2 , . . .]. For the example of

the ramphoid cusp, f(x, y) = (x2 − x + 1)y2 − 2x2y + x4 = 0, we obtain the
singular part of the Puiseux expansion at (0, 0) in the form

PuiExp =
2 4 1 1 -1
2 4 1 1 1

which coincides with the Maple result in the previous chapter. In contrast to
there, we give also the α

(n)
i that differ only by a multiplication with a root of

unity.
For the curve (3.4) we find

PuiExp{1} =
2.0000 3.0000 0 + 1.4142i
2.0000 3.0000 0 - 1.4142i
1.0000 4.0000 0.5000

PuiExp{2} =
4.0000 7.0000 -1.0000
4.0000 7.0000 0 + 1.0000i
4.0000 7.0000 0 - 1.0000i
4.0000 7.0000 1.0000

where the matrix PuiExp{1} corresponds to the singularity at (0, 0) ([0, 0, 1])
and the matrix PuiExp{2} to infinity ([0, 1, 0]).

3.4 Basis of the Holomorphic Differentials
on the Riemann Surface

It is well known (see [BK86, Noe83] or the previous chapter) that the holo-
morphic differentials on the Riemann surface associated to an algebraic curve
(3.1) can be written in the form

ωk =
Pk(x, y)
fy(x, y)

dx , (3.8)
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where the adjoint polynomials Pk(x, y) =
∑
i+j≤d−3 c

(k)
ij xiyj are of degree at

most d−3 in x and y. If the curve has no singular points, there are no further
conditions on the Pk and, consequently, there are g = (d−1)(d−2)/2 linearly
independent polynomials Pk. Since, as is well known, the dimension of the
space of holomorphic 1-forms is equal to the genus g of the Riemann surface,
the genus is (d− 1)(d− 2)/2 in this case.

If there are singular points, the set of which is denoted by S, there is a
number δP – called the delta invariant – of further conditions on the Pk at a
point P ∈ S as a consequence of the holomorphicity of the differentials also
at these points. The genus of the surface is given in this case by

g =
1
2
(d− 1)(d− 2)−

∑

P∈S
δP . (3.9)

We determine these conditions by substituting the singular part of the m
Puiseux expansions (3.6) at the singular points P = (xs, ys) into (3.8). As de-
scribed in the previous section this implies the transformation of both fy(x, y)
and Pk(x, y) to the coordinates x = x̃ + xs, ỹ + ys. In the denominator we
determine the lowest power of t, denoted by nD in the following.

If the singular part of the Puiseux expansion consists of one term only, the
procedure is straightforward4: we get for the differentials in (3.8) in lowest
order in t

ωk ∼
∑

i+j≤d−3

{
c̃
(k)
ij tNP (i,j) + o

(
tNP (i,j)

)}
dt , (3.10)

where NP (i, j) = ri + s1j + r − 1 − nD (r, s1 as defined in (3.5)). Since the
ωk must be holomorphic in every coordinate chart, no negative powers in t
can arise in (3.10) which implies that all coefficients in front of such terms
must vanish. If a negative power NP (i, j) appears only once in an expansion,
the corresponding c̃

(k)
ij = 0. If there are several c̃

(k)
ij with the same value

NP (i, j) < 0, only a linear combination of them has to vanish. Transforming
back to x and y, we obtain conditions on the coefficients c

(k)
ij . The number

of linearly independent relations of this kind at a singularity is equal to its
delta invariant. It is determined here simply by counting the conditions. For
an alternative way to determine the delta-invariant at a given point from the
Puiseux expansions alone see [Kir92] or the previous chapter.

If the singular part of the Puiseux expansion consists of several terms,
higher order expansions of Pk(x, y) and fy(x, y) in t have to be considered. To
determine the lowest power of t, denoted by tnD , in fy(x, y) we use, if necessary
several times, transformations of the form (3.7) as in the computation of the
Puiseux expansions described in the previous section. For the polynomials
Pk(x, y) we get in a similar way
4 For readability we omit the index (n) in (3.6) in the sequel; it is understood that

the procedure described below has to be repeated for each of the m inequivalent
Puiseux expansions.
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Pk =
∑

i+j≤d−3

j∑

l1=0

l1∑

l2=0

. . .

lp−2∑

lp−1=0

c̃
(k)
ij tNP (i,j,l1,...,lp−1)×

αj1α
l1
2 αl23 . . . αlp−1

p

(
j
l1

)(
l1
l2

)
. . .

(
lp−2

lp−1

)
,

(3.11)

where the singular part of the Puiseux expansion (3.5) consists of p terms, and
where the numbers NP (i, j, l1, . . . , lp−1) = ri+js1+ l1s2+ l2s3+ . . .+ lp−1sp+
r − 1 − nD (r, s1, . . . as defined in (3.5)) are stored as a (p + 1)-dimensional
array. For instance, for a singular part of the form y = α1t

s1(1 + α2t
s2) we

obtain in (3.10) powers of t with the exponents NP = ri + s1j + r − 1 −
nD + s2k, k = 0, . . . j which is a 3-dimensional array in i, j and k. As above,
negative powers must not appear due to the holomorphicity condition for
the differentials. Thus, for a given exponent NP (i, j, l1, . . . , lp−1) < 0, the
linear combination of the corresponding c̃

(k)
ij must vanish. Thus, the array of

exponents NP (i, j, l1, . . . , lp−1) in (3.11) also takes care of conditions for the
holomorphicity of the differentials at the considered singularity due to higher
order terms in the Puiseux expansions.

Singular points at infinity are treated in a completely analogous way after
the transformation x → X/Z and y → Y/Z to homogeneous coordinates,
which implies for (3.8)

ωk =
Zd−3Pk(X/Z, Y/Z)
Zd−1fy(X/Z, Y/Z)

Z2d(X/Z) =
Zd−3Pk(X/Z, Y/Z)
Zd−1fy(X/Z, Y/Z)

(ZdX −XdZ) .

(3.12)

The powers of Z in the numerator and the denominator are chosen in a way
that both are polynomials in X , Y and Z. With X = Xs+X̃ we get for (3.12)

∑

i+j≤d−3

i∑

l=0

c
(k)
ij

(
i
l

)
X i−l
s X̃ lY jZd−3−i−j . (3.13)

The Puiseux expansions can be used as above to determine the conditions on
the c

(k)
ij .

To implement the conditions on the adjoint polynomials at the singularities
in Matlab, we write the matrix c

(k)
ij with i+ j ≤ d− 3 in a standard way as a

vector c of length (d−1)(d−2)/2. The holomorphicity of (3.8) at the singular
points implies relations of the form Hc = 0 where H is a ((d− 1)(d− 2)/2)×∑

P∈S δP matrix. Each condition on c following from (3.10) or (3.11) gives
a line in H . The first such condition found is stored as the first row of H .
For each subsequent condition found, it is checked that this new condition
is linearly independent of the already present ones in H . This is done in the
following way: if the matrix H contains M linearly independent conditions on
c, the first M rows will be non-trivial, and H has rank M . The new condition
will be tentatively added as row M + 1 in H , and it will be checked if the



3 Algebraic Curves and Riemann Surfaces in Matlab 137

resulting matrix has rank M+1. If not, the new condition is linearly dependent
on the M conditions already stored in H , and line M + 1 will be suppressed.
At the end of this procedure, there will be

∑
P∈S δP non-trivial lines in this

matrix. The holomorphic differentials correspond to the vectors c in the kernel
of the matrix H . They are determined with the Matlab command null, where
null(H) provides an orthonormal basis for the null space of H . Notice that
for reasons of numerical accuracy we do not look for a rational basis c of the
kernel of H even in cases where such a basis exists. The polynomials Pk are
stored in the form of matrices c

(k)
nm where in Matlab convention Pk(x, y) =∑d−3

n,m=0 c
(k)
nmxd−3−nyd−3−m, and where the first row/column has n = 0/m =

0. The code gives the matrices c(k) as c{1}, . . . , c{g}, where g is the genus of
the Riemann surface. For the curve (3.4), where d=7, we get

c{1} =
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c{2} =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

i.e., the polynomials P1 = xy and P2 = x3. Thus, the curve has genus 2.

3.5 Paths for the Computation of the Monodromies

To compute the monodromy group of a given Riemann surface, we proceed in a
similar way as in the ‘algcurves’ package described in the previous chapter. In
Sect. 3.2 we have determined the discriminant points, i.e., the branch points
and singularities of a given algebraic curve, which are denoted by bi, i =
1, . . . , Nc. In this section we construct a set of generators for the fundamental
group π1(CP 1 \ {bi}Nci=1): First we choose a base point a on CP 1 \ {bi}Nci=1.
Then we construct a set of contours Γi, i = 1, . . . , Nc, i.e., closed paths in the
base of the covering starting at the base point a and going around each of
the finite discriminant points projected into the base. These contours have to
generate the fundamental group of CP 1 \ {bi}Nci=1 as discussed in Chap. 1, see
Fig. 1.14. Numerical problems are to be expected if a contour Γi comes too
close to one of the discriminant points or to points, where y is infinite on the
algebraic curve, i.e., to one of the problem points Pj as defined in the previous
chapter. Thus, it is necessary in the construction of the contours that all of
them have a minimal distance from all problem points.
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As in the previous chapter we determine the minimal distance ρ between
any two problem points,

ρ = mini�=j |Pi − Pj |

We choose a radius R = κρ, where 0 < κ < 0.5 for circles around these
discriminant points. For a better vectorization5 of the code we use the same
value of R for all discriminant points in contrast to the ‘algcurves’ package,
where such a radius is determined for each of them. We typically work with
values of κ between 1/3 and 1/2.1 (in Maple, the value κ = 2/5 is used). With
this value for R we define a set of points on these circles,

C±
i := bi ±R , i = 1, . . . , Nc ,

which divide each circle into two half circles. The contours Γi, i = 1, . . . , Nc,
are built from these half circles and lines between the C±

i .
The general procedure to construct the contours Γi is as follows: One of

the C±
i is chosen to be the base point a. This point can be either, as in the

‘algcurves’ package, the C±
i with the smallest real part, or the C±

i closest to
the arithmetic mean of the bj , j = 1, . . . , Nc. The latter is the choice here.
The discriminant points are then reordered according to an ascending order
of the arguments φi = arg(bi − a).6 Let i0 be the index of the discriminant
point, such that a is one of the two points C±

i0
. The positively oriented contour

Γi0 is simply the circle around bi0 , starting and ending at a.
The contours Γi for i 	= i0 are constructed in the following way: one of

the points C±
i0

and one of the C±
i are connected by a straight line in such a

way that the distance between the line and bi, bi0 is maximal. Even if this
connecting line does not touch any of the circles around the other branch
points, it can enter the interior of the circles around bi or bi0 as can be seen in
Fig. 3.1, where the paths are drawn for the curve (3.4). Such a connecting line
comes closest to the branch points if the distance between it and bi or bi0 is
equal to the minimal distance ρ, and if |�(bi− bi0)| = R. A simple calculation
shows that the minimal distance between the above connecting line and one
of the discriminant points is in this case dc := R

√
1− κ2.

If one of the above connecting lines enters the interior of a circle around
one of the remaining problem points Pj , the contour has to be deformed as in
the Maple package: instead of the line between one of the C±

i0
and one of the

C±
i , two lines are considered between each pair of C±

i0
and C±

j , and C±
j and

C±
i . This procedure is iterated until a contour is found that stays away from

all problem points with minimal distance dc. The result of this procedure for
the curve (3.4) can be seen in Fig. 3.1.

5 This denotes the simultaneous execution of similar commands by a computer.
6 Since we use a fully numerical approach, rounding errors imply that there are in

general no degeneracies of these arguments. Otherwise standard Matlab ordering
is taken.
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Fig. 3.1. Paths for the computation of the monodromies for the curve (3.4) with
a radius of the circles around the discriminant points R = 2.1 ∗ ρ, where ρ is the
minimal distance between any two branch points. The base point is marked with a
square

3.6 Computation of Monodromies and Periods

As shown in Sect. 1.2, an algebraic curve (3.1) defines an N -sheeted covering
of the Riemann sphere. This covering can be characterized by the following
data: branch points and permutations, which are called the monodromies
of the covering. To compute them we lift the basis of π1(CP 1 \ {bi}Nci=1),
the contours Γi, i = 1, . . . , Nc, constructed in the previous section, to the
covering.

Since by construction no branch point or singularity lies on the Γi, there
are always N distinct roots yn in f(x, y) = 0 for a given x ∈ Γi, i = 1, . . . , Nc.
The procedure is then similar to the one in the ‘algcurves’ package in Maple:
At the base point x = a we label the sheets and obtain a vector y(a) =
(y1(a), . . . , yN (a)) =: (A1, . . . , AN ) by solving f(a, y) = 0. If we start at a
point Ak, k = 1, . . . , N on the covering, and consider the analytic continuation
of the vector of roots y along one of the contours Γi, we will in general
obtain a permutation of the components of the vector y back at the base
points,

σiy := (yσi(1)(a), . . . , yσi(N)(a)) (3.14)

The permutation σ∞ associated to x =∞ can be computed in the same way
along a contour Γ∞ with negative orientation surrounding all finite branch
points, i.e., for which we have Γ1Γ2 . . . ΓNcΓ∞ = 1. Alternatively it follows
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from the permutations obtained for the finite discriminant points via the
relation

σ∞ ◦ σNc ◦ . . . ◦ σ1 = 1 . (3.15)

The group generated by the σi is called the monodromy group of the covering.
The task is thus to numerically construct the analytic continuation of the

vector y along the lifted contours Γi. Since we are interested in an efficient
computation of the Riemann matrix, we do not separate the monodromy
computation from the integration of the holomorphic differentials along these
contours, but do both in one go. As will be seen in the next section, not all of
these integrals are linearly independent. Our integration procedure will thus
provide more integrals than actually needed. But the efficient vectorization
algorithms in Matlab ensure that the computation of the additional integrals
will not be time consuming. In addition, the possibility to check the validity
of identities between the computed integrals will provide strong tests of the
numerical results since the integrals are computed independently.

For the computation of the integrals of the form
∫ 1

−1
F(x)dx we use Gauss

integration which is known to be numerically optimal, see for instance [Tre00]
and references therein. The theoretical basis of Gauss(-Legendre) integration is
an expansion of the integrand in Legendre polynomials by a collocation method
on the Legendre points {xl}, i.e., the zeroes of the Legendre polynomials Pn(x)
for |x| ≤ 1. This means that we approximate the function F(x) for |x| ≤ 1 by
a truncated series in Legendre polynomials: F(x) ∼

∑Nl
k=0 akPk(x), where the

spectral coefficients ak follow from imposing this approximation as an exact
equation at the Legendre points xl, i.e., F(xl) =

∑Nl
k=0 akPk(xl), l = 0, . . . , Nl

(Nl is also called the number of modes in the computation). Consequently, we
obtain

∫ 1

−1

F(x)dx ∼
Nl∑

k=0

ak

∫ 1

−1

Pk(x)dx . (3.16)

An expansion of a function with respect to a system of globally smooth func-
tions on their domain is called a (pseudo-)spectral method. The computation of
the spectral coefficients ak by inverting the matrix Pk(xl) and the integral of
the Legendre polynomials in (3.16) can be combined in the so-called Legendre
weights Lk, with which (3.16) can be written in the form

∫ 1

−1

F(x)dx ∼
Nl∑

k=0

F(xk)Lk . (3.17)

Thus, for given function values F(xk) at the Legendre points xk and weights
Lk, the numerical approximation of the integral is just the computation of a
scalar product. The Legendre points and weights can be conveniently deter-
mined in Matlab via Trefethen’s code [Tre00,Tre]. They have to be computed
only once and are then stored for later use in the numerical integrations.
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It is known that the difference between a smooth function F and its
spectral approximation decreases with Nl faster than any power of 1/Nl, in
practice exponentially with the number of modes Nl. Here we have to in-
tegrate functions of x and y on a set of contours where the functions are
analytic, which guarantees an optimal efficiency of the method provided the
radius R of the circles is not too small. Thus, we can reach machine precision
typically with Nl ≤ 64. The contours consist of lines and half circles each
of which is mapped to the interval [−1, 1], where we use Gauss integration.
To reach machine precision, it is obviously necessary to know the integrand
with this precision. Therefore, we cannot analytically continue the vector y as
was done in Maple (see the previous chapter) for the monodromy computa-
tion by solving a first order differential equation (to reach machine precision
the solution of a differential equation is not efficient, since too many steps
would be needed). Instead we will solve the algebraic equation f(x, y) = 0
on each collocation point xl. Since the Γi, i = 1, . . . , Nc, by construction do
not come close to branch points or singularities, no multiple roots will occur.
Thus, we can use roots efficiently to determine y. The analytic continuation
is obtained by sorting the newly computed vector components according to
minimal difference with the components at the previous collocation point.

Carrying out this procedure starting from a base point Ak along some con-
tour Γi, i = 1, . . . , Nc, one obtains the permutation by comparing the analytic
continuation of y along Γi and y. Since y is then known at the collocation
points, the same holds for the holomorphic differentials there. The integrals
of the holomorphic differentials along Γi are obtained via Gauss integration,
and the results are stored in a N × Nc × g array. The sum of integrals of a
holomorphic differential over all contours with the same projection into the
x-sphere must vanish. In practice this sum will not vanish because of nu-
merical errors and thus gives an indication on the quality of the numerics.
The code issues a warning if this sum is greater than the prescribed rounding
tolerance Tol. The monodromies σi are stored in an N ×Nc-array. We then
check which of the discriminant points are actually branch points, i.e., have
non-trivial monodromy. The monodromy at infinity is computed via (3.15)
from the monodromies at the finite branch points. It could be computed via
the contour Γ∞ as in Maple to provide an additional test, but this is not done
here for reasons of numerical efficiency.

The base point used by the code is stored in the variable base, the vector
y(a) indicating the labeling of the sheets in the variable ybase, the branch
points in bpoints, and the monodromies in the variable Mon.

For the curve (3.4) the code produces the base point

base =
-0.4926

ybase =
-0.5031
0.4736
0.0296,
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the branch points

bpoints =
-1.0346
-0.3197 - 0.9839i
0.8370 - 0.6081i

0
0.8370 + 0.6081i

-0.3197 + 0.9839i
Inf

and the monodromies

Mon =
1 3 1 2 1 3 2
3 2 3 1 3 2 3
2 1 2 3 2 1 1. (3.18)

This example shows that going around the first branch point one ends up in
the third sheet when starting in the second and vice versa, whereas sheet one
is not affected.

Remark 2. The above procedure to compute monodromies and periods is in-
sensitive to the accuracy with which the branch points are computed as long
as the error in the branch points is much smaller than the radius of the circles
around the points. For numerical accuracy of the periods, it is just important
that the branch points are not close to the contours. Inaccuracies in the loca-
tions of the singular points will, however, affect the precision since they enter
directly the regularity conditions on the holomorphic differentials and thus
lead to numerical errors in the c

(k)
ij .

3.7 Homology of a Riemann Surface

The monodromies computed in the previous section provide the necessary
information to determine a basis for the homology on a Riemann surface. We
use as in the ‘algcurves’ package (see Chap. 2) the algorithm by Tretkoff and
Tretkoff [TT84] to construct such a basis.

The first step in this construction is the identification of the points on
the covering belonging to more than one sheet, i.e., the points, where the
branching number defined in Sect. 1.3 is different from zero. To this end one
has to identify the cycles7 within the permutations in the monodromies com-
puted in the previous section. This is simply done by determining for each

7 We apologize for the dual use of the word cycle here, for a cycle in permutations
and for a closed path; unfortunately cycle denotes different things in different
parts of mathematics which are both relevant here.
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discriminant point with non-trivial monodromy, i.e., each branch point, the
sheets which are permuted whilst encircling this point. The permuted sheets
form the cycles within the permutation. They are identified as follows: the
monodromies are given as permutations of the vector (1, 2, . . . , N). For each
permutation vector the code identifies the components which are not in the
order (1, 2, . . . , N). For the first such component, it goes to the sheet indi-
cated by this component, then to the next indicated by the component in the
vectors there, until the starting point for the procedure is reached again. This
identifies the first cycle. For the first vector in the example (3.18), the first
permuted component corresponds to the second sheet. The 3 there indicates
that going around this point in the second sheet, one ends up in the third.
The third component of the permutation vector is a 2, the sheet where this
cycle (2, 3) started.

If not all permuted sheets appear in the first cycle identified in this way,
the procedure is repeated for the remaining permuted sheets until all per-
mutation cycles are determined. Each such cycle corresponds to one of the
NB ramification points on the covering and is labelled by Bi, i = 1, . . . , NB,
where it is possible that several such points have the same projection onto
the complex plane. From the number ni of elements in the permutation cycle
we obtain the branching number βi = ni − 1. The Riemann–Hurwitz formula
(see Chap. 1) then allows the computation of the genus:

g =
1
2

NB∑

i=1

βi + 1−N . (3.19)

Since the determination of the genus via monodromies is completely inde-
pendent from the genus computation via the dimension of the space of the
holomorphic 1-forms, this provides a strong test for the code. A failure in this
test results in an error which typically indicates that the branch points and
singularities were not correctly identified by multroot. For the curve (3.4) we
find that all branch points on the covering connect exactly two sheets except
for the one above infinity (3 sheets). The genus is thus 2 in accordance with
the results for the holomorphic 1-form

We will briefly give the ingredients of the Tretkoff–Tretkoff algorithm used
to determine the homology. This is just a planar version of the Tretkoff–
Tretkoff tree constructed on the covering and discussed in Chap. 2. For details
and proofs the reader is referred to [TT84]. The algorithm constructs a span-
ning tree connecting the points Aj on the covering starting from {A1} with
the points {Bi}. We list below a set of rules to construct the tree that will
consist of several branches:

1. Start with A1 and connect A1 to all Bi in the first sheet. The Bi have to
be arranged on the tree with increasing index i. This leads to a first set
of branches in the tree starting at A1 and ending at the respective Bi.

2. Connect all Bi at the open branch ends to all Aj that can be reached
directly from this Bi, except for those that are already present on the
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considered branch. If several Aj can be reached in this way from one of
the Bi, the Aj-ends have to be arranged in the tree in the order indicated
by the corresponding permutation cycle.

3. Starting from the branch ends containing the Bi with smallest index i,
terminate the branches at Aj which occur more than once on the tree.

4. Continue all not terminated branches to the Bk not yet on this branch
that can be reached from the respective Aj . Arrange them in ascending
order of the indices starting with the one following the index i of the last
Bi in the considered branch. If index NB is reached, one has to continue
with 1.

5. Starting from the branch ends containing the Bi with smallest index i,
terminate the branches at Bi which occur more than once on the tree.

6. Repeat steps 2.-5. until all branches are terminated.

In [TT84] it is proven that the resulting tree has 4g + 2N − 2 branches. For
the example of the monodromies (3.18) this procedure leads to the tree in
Fig. 3.2.
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A2

B6

B5

B2

B4

A2

B7

B1

B3

A2

A1
B6

B7

B3
B1

B7

B5

A2

A3

A2

A3

P1

P2

P3

P4

P5

P6

Q4

Q2

Q3
Q1

A3

Q6

Fig. 3.2. Tretkoff–Tretkoff planar graph for the curve (3.4). The intersection num-
bers are obtained by following the dashed cycle as explained in the text
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The Tretkoff–Tretkoff algorithm allows to identify non-trivial closed cycles
on the Riemann surface and to compute intersection numbers between them.
To this end one identifies the end piece BpAq of the planar graph (denoted
by Pk), k = 1, . . . , 2g + N − 1, with the end piece AqBp (denoted by Qk)
which leads to a closed cycle ck on the surface. In total, one thus obtains
2g + N − 1 cycles. Since the homology on a Riemann surface of genus g
has dimension 2g, the cycles cannot be all linearly independent. To find a
canonical basis as defined in Chap. 1, one has to compute the intersection
matrix K for the obtained 2g + N − 1 cycles. This is straightforward to do
from the planar graph: the intersection indices of the contours are replaced
by intersection indices of the corresponding chords [Pi, Qi]. Therefore, the
intersection matrix is computed as follows: draw a closed contour in the planar
graph going through all branch ends BpAq and AqBp (see for instance the
dashed line in Fig. 3.2). To obtain the entries of the intersection matrix for
the first cycle (the one corresponding to [P1, Q1]) one goes along this contour
in positive direction from P1 to Q1. Each branch end Pi crossed on the way is
counted as an intersection with value +1 of the first cycle with the ith, each
end with Qi as an intersection with value −1. It was shown in [TT84] that
the resulting matrix has rank 2g. For the example shown in Fig. 3.2 for the
curve (3.4) we obtain the intersection matrix:

K =
0 0 0 -1 -1 -1
0 0 1 -1 0 -1
0 -1 0 0 -1 0
1 1 0 0 1 1
1 0 1 -1 0 0
1 1 0 -1 0 0.

This matrix can be transformed to the canonical form

αKαT =

⎛

⎝
0g Ig 0g,N−1

−Ig 0g 0g,N−1

0N−1,g 0N−1,g 0N−1,N−1

⎞

⎠ , (3.20)

where α is a (2g + N − 1) × (2g + N − 1)-matrix with integer entries and
detα = ±1, 0g is the g × g zero matrix, Ig is the g × g identity matrix, and
0i,j the i× j zero matrix. The canonical basis of the homology of the surface
is given by the cycles ai and bi:

ai =
2g+N−1∑

j=1

αijcj , bi =
2g+N−1∑

j=1

αi+g,jcj , i = 1, . . . , g , (3.21)

where cj are the 2g +N − 1 closed contours obtained from the planar graph.
The remaining cycles are homologous to zero,

0 =
2g+N−1∑

j=1

αijcj , i = 2g + 1, . . . , 2g + N − 1 . (3.22)
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For the curve (3.4), the code produces

acycle{1} =
1 4 2 3 3 2 1

acycle{2} =
1 4 2 1 3 2 1

bcycle{1} =
1 6 3 2 1

bcycle{2} =
2 3 3 2 3 5 2,

where acycle{i} corresponds to ai, and bcycle{i} to bi. These numbers are
to be read in the following way: The numbers at odd positions in the cycle
correspond to the indices j of Aj , j = 1, . . . , N , the numbers at the even
positions to the indices i of the Bi, i = 1, . . . , NB. In the above example,
the cycle b1 starts in the first sheet, goes around B6 to end in the third
sheet, then around B2 to come back to the first sheet. The code can give
more detailed information on the Tretkoff–Tretkoff tree and the cycles ck,
k = 1, . . . , 2g + N − 1, as an option (it is stored in the variable cycle in the
code tretkoffalg.m).

Relations (3.21) allow the computation of the periods of the holomorphic
differentials from the integrals along the contours Γi used for the monodromy
computation. The cycles ck, k = 1, . . . , 2g+N−1, are equivalent to a sequence
of contours Γi. Thus, using (3.21) and the integrals of the holomorphic differ-
entials along the contours Γi, we get the a- and b-periods of the holomorphic
differentials, the matrices A and B, respectively. The Riemann matrix B as
defined in Chap. 1 is then given by

B = A−1B. (3.23)

Since the Riemann matrix must be symmetric, the asymmetry of the com-
puted matrix is a strong test for the numerical accuracy. A warning is re-
ported if the asymmetry is greater than the prescribed tolerance. Similarly
it is checked whether the periods along the cycles (3.22) homologous to zero
vanish with the same accuracy. For the curve (3.4) the code finds the Riemann
matrix

RieMat =
0.3090 + 0.9511i 0.5000 - 0.3633i
0.5000 - 0.3633i -0.3090 + 0.9511i.

For a more compact representation we give only 4 digits here though 16 are
available internally. The Matlab norm (the largest singular value8) of B−BT

8 The singular-value decomposition of an m × n-matrix M with complex entries
is given by M = UΣV †; here U is an m × m unitary matrix, V † denotes the
conjugate transpose of V , an n × n unitary matrix, and the m × n matrix Σ is
diagonal (as defined for a rectangular matrix); the non-negative numbers on the
diagonal of Σ are called the singular values of M .
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and the same norm of the periods along the cycles (3.22) are of the order of
10−7 with just 16 modes, and of the order of 10−15 with 64 modes. We will
discuss the performance of the code in more detail in the next section.

3.8 Performance of the Code

As already mentioned, the exponential decrease of the error in the computa-
tion of the periods with the number Nl of Legendre polynomials is a general
feature of spectral methods. The numerical error we will study here in more
detail is defined as the maximum of the Matlab norm of the antisymmetric
part of the numerically computed Riemann matrix and the same norm of the
right hand sides of (3.22). The resulting variable is denoted by err. For the
curve (3.4) we get the values for err shown in Fig. 3.3. The plot is typical for
spectral methods: one can see the exponential decrease of the error (an essen-
tially linear decrease in a log–log plot) and the saturation of the error once
machine precision is reached, here at 10−14.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

−14

−12

−10

−8
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−4

log2 Nl

lo
g 1

0 
er

r

Fig. 3.3. Numerical error err as defined in the text for the curve (3.4) (stars) and
the curve (3.24) (diamonds)

For the curve (3.4) machine precision is reached with just 32 polynomials.
A more demanding test for the code is provided by the curve

f(x, y) = y9 + 2x2y6 + 2x4y3 + x6 + y2 = 0, (3.24)
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which is a nine-sheeted genus 16 covering of the sphere with 42 finite branch
points and two singular points (0, 0, 1) and (1,0,0). What makes this curve
computationally demanding is the fact that the minimal distance between
the branch points is just 0.018. The dependence of the error on the number
of Legendre polynomials is shown in Fig. 3.3. It can be seen that machine
precision is reached with just 128 polynomials.

It is difficult to compare timings in Matlab and Maple from a theoreti-
cal point of view since both are programming languages that can use both
embedded and interpreted, i.e., not precompiled code. Thus, the found com-
puting timings depend largely on how much a code makes use of precompiled
commands. In addition the timings given by Maple and Matlab are strongly
dependent on the used processor. But the timings have a practical value in
the sense that they give an indication which kind of problems can be solved
by the respective code on which timescales. The computation times given be-
low have been obtained on a Macbook Pro with 1.8GHz. The computation
of the Riemann matrix for the curve (3.4) with 16 polynomials takes roughly
0.3 s in Matlab to reach err = 3 ∗ 10−7. On the same computer, the Maple
‘algcurves’ package takes roughly 13 s to achieve the same accuracy. To reach
an error of the order of 10−13, we need in Matlab 32 polynomials which takes
roughly 0.5 s (Normally the code uses Nl = 64, but this can be changed by
the user). The same precision can be reached in Maple by setting the variable
Digits := 15. With this setting the computation takes roughly 35 s. Thus,
the difference in computing time is more than an order of magnitude which
implies that different sorts of problems can be studied in Matlab: curves of
higher genus or families of curves to explore their modular properties. The
computation of the Riemann matrix for the curve (3.24) takes for instance
roughly 30 s with 64 polynomials (err ≈ 10−8).

It is interesting to know for which operations the computation time in
Matlab is used. Again the above mentioned restrictions on the significance
of Matlab timings apply, but here we are mainly interested in the practical
aspect. In addition we used the vectorization algorithms in Matlab as much as
possible to obtain an efficient code. For the Riemann matrix of the curve (3.4)
computed with 64 polynomials we find that 67% of the time is used for the
analytic continuation of y along the contours and the computation of the inte-
grals. These 67% of the total computing time are distributed on the following
tasks: 20% are used to solve the algebraic equation via roots. Almost 50% of
the time are taken for the sorting of the found values for y(xn) in order to pro-
vide minimal differences to y(xn−1), i.e., to obtain an analytic continuation of
the sheets. The Gauss integration, which is just a matrix multiplication in this
implementation, only takes negligible computation time. Other main contri-
butions to the computing time are the identification of the branch points and
singularities of the algebraic curve via multroot (12.7% of the total comput-
ing time) and the identification of the holomorphic differentials via Puiseux
expansions (6.8%). The distribution of computing time to the different nu-
merical tasks necessary to obtain the Riemann matrix for an algebraic curve
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depends of course on the studied example. The above considerations indicate,
however, where the main allocation of the computational resources is to be
expected.

In the previous examples, the main numerical problems were related to
the computation of the monodromies of the algebraic curve. Here difficulties
arise if the branch points are ‘very close’ to each other, i.e., ρ 1. If a curve
has singularities where the singular part of the Puiseux expansion consists of
many terms, rounding problems occur as mentioned in Sect. 3.3. For instance
the curve

f(x, y) = ((y3 + x2)2 + x3y2)2 + x7y3 = 0 (3.25)

has a singularity at (0, 0, 1), where the singular part of the Puiseux expansion
consists of 3 terms. In this case the rounding errors in the Puiseux coefficients
introduce errors in the conditions on the adjoint polynomials (the delta in-
variant is 43 at this point) and thus in the differentials. These errors are of
the order of 10−5 which is also the value for the numerical error err in this
case. The error does not get smaller if a higher number of Legendre polyno-
mials and thus a higher numerical resolution is used since it is independent
of the monodromy computation. Such non-generic singularities (which need
high-order Puiseux expansions to be resolved) impose as expected limitations
on the applicability of a purely numerical approach.

3.9 Hyperelliptic Surfaces

So far we have treated general algebraic curves within the limitations imposed
by a fully numerical approach. In this section we will present a special code
for the important subclass of hyperelliptic curves that has many applications
in the theory of integrable systems.

In the previous section, the qualitative study of the distribution of compu-
tation time in the present approach to algebraic curves revealed that most of
this time is needed to analytically continue the solutions y(x) of f(x, y) = 0,
and to identify the critical points of the curve and the holomorphic differ-
entials. Thus, an additional and decisive gain in speed is to be expected in
cases, where the algebraic equation f(x, y) = 0 can be solved analytically.
An important example of this kind are hyperelliptic curves, since they appear
in the context of algebro-geometric solutions of various integrable equations
such as KdV, NLS and Ernst equations. These have many applications in
the theory of hydrodynamics, fiber optics and gravitation, see for instance
[BBE+94,KR05] and references therein.

The equation for a hyperelliptic curve Σg of genus g can be written in the
form

y2 =
g+1∏

i=1

(x− Ei)(x − Fi) =: P2g+2(x) , Ei, Fi ∈ C , i = 1, . . . , g + 1 ,

(3.26)
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if the curve is not branched at infinity, and as y2 = P2g+1(x), where P2g+1(x)
is a polynomial of degree 2g + 1 in x, if it is branched at infinity. A basis for
the space of the holomorphic differentials is given by (see Chap. 1):

ν =
(

dx
y

,
xdx
y

, . . . ,
xg−1dx

y

)
. (3.27)

There is a standard way to choose a canonical basis for the homology of a
hyperelliptic surface as follows: We introduce on Σg a canonical basis of cycles
(ak, bk), k = 1, . . . , n as in Fig. 3.4. The cycle ai encircles the cut [Ei+1, Fi+1]
for i = 1, . . . , g (if the curve is branched at infinity, we put Fg+1 =∞).

The cuts [Ei, Fi], i = 1, . . . , g + 1 are chosen in a way not to cross each
other. The branch points are supposed to be separated within the numerical
resolution, i.e., the minimal distance between any two points should not be
smaller than 10−14. For general curves, the branch points had to be clearly
separated, and the code gives a warning, if the minimal distance between
branch points is smaller than 10−3. For the hyperelliptic curves studied in this
section, we explicitly allow for the fact that the branch points almost coincide
pairwise, |Ei − Fi| = 10−14 for any i = 2, . . . , g + 1. The limit Ei → Fi,
i = 2, . . . , g + 1 is known in the theory of algebro-geometric solutions to
integrable equations as the solitonic limit. In this limit, the periods in the
almost periodic solutions diverge and solitons appear. The canonical basis of
the homology in Fig. 3.4 is adapted to this limit in the sense that the a-cycles
surround the double points appearing in the solitonic limit.

1F 2E 2F g+1E g+1F
1E

1b
1a ga

gb

Fig. 3.4. Canonical cycles

For the computation, we use the fact (see e.g. [BBE+94]) that the periods
of the holomorphic differentials can be expressed in terms of integrals along
the cuts. For the a-periods, one has

∮
ai

νk = 2
∫ Fi+1

Ei+1
νk, whereas the b-periods

are sums of the integrals −2
∫ Ei+1

Fi
νk, i, k = 1, . . . , g,. All these integrals are to

be taken along the side of the cut in the upper sheet. From a numerical point
of view, the disadvantage of an integration along the cut is that unavoidable
numerical errors would lead to almost random sign changes of the root y
in the integrals of (3.27). To overcome this problem, the integration path is
taken parallel to the cut and displaced towards the upper sheet by some small
distance δ, which is chosen to be of the order of the rounding error (10−14).
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Since δ is smaller than machine precision, the results will be numerically
indistinguishable from the ones obtained by a direct integration along the
cut. But the finite distance to the cut allows to effectively avoid unwanted
sign changes of y due to numerical errors.

For the analytical continuation of y along the cycles in Fig. 3.4, we also
use contours that almost coincide with the cuts, i.e., rectangles around the
cuts with a distance δ to the cut. The advantage of this choice is that the
cycles are geometrically simple, and that they do not come close to the other
cuts. Thus, the cycle ai is chosen as the rectangle with the sides z = Ei+1 +
(Fi+1 − Ei+1)t ± iδ exp(iarg(Fi+1 − Ei+1)), t ∈ [−δ, 1 + δ], δ ∼ 10−14, which
gives the two lines parallel to the cut at a distance δ to it, and the two lines
connecting the neighboring end points of these lines. The b-cycles are built
from analogous rectangles around [Fi, Ei+1].

For the analytic continuation of y along these cycles, we fix a base
point a near the branch point E1 with smallest negative real part. At this
point the sheets are labelled in the usual way, y1,2 = ±

√
P2g+1(a) or

y1,2 = ±
√

P2g+2(a). We then determine this square root for x-values between
a and E1 + δ. This is done for a vector v = (x1, . . . , xNl), where x1 = a and
xNl = E1 +δ (for simplicity we use the same number of points as in the Gauss
integration), which leads to a vector u =

√
P2g+2(v) or u =

√
P2g+1(v) in the

upper sheet, where the square root is understood to be taken component-wise
as in Matlab (this is done in a vectorized way). The built-in square root in
Matlab is branched along the negative real axis. This implies that the com-
puted u might change sign on the way from a to E1+δ. The square root we are
interested in is, however, only branched at the cuts [Ei, Fi], i = 1, . . . , g+1. To
construct it from the computed Matlab root, we have to ensure that for each
component un of u the absolute value of the difference to un−1 is smaller than
the one to −un−1, i.e., |un + un−1| > |un − un−1|. If this is not the case, this
indicates a sign change in the Matlab root, and one has to change the sign of
un. Notice that Nl has to be large enough to allow for a unique identification
of the sheets in this way. The above procedure is then continued along the a-
and b-cycles. The numerical precision is not very high for this procedure since
we come close to the branch points, where y vanishes, but it is sufficient to
determine the correct sign, which is the purpose of this procedure.

To compute the periods of the holomorphic differentials for the above
canonical basis of the homology, we will again use Gauss integration. For an
efficient use of this method, the integrands have to be smooth, which is not
the case because the integration contour comes close to branch points where
the integrands (3.27) proportional to 1/y have square root singularities. The
situation is even worse close to the solitonic limit where the branch points
almost coincide. The idea is to use substitutions in the period integrals leading
to a smooth integrand. To determine the a-periods, we use for the cycle ai−1

the relation

x =
Ei + Fi

2
+

Fi − Ei
2

cosh t , i = 2, . . . , g , t ∈ [0, iπ] . (3.28)
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The sign of y in the integrand (3.27) is fixed as described in the last paragraph.
After the transformation t = iπ(1 + l)/2, l ∈ [−1, 1], the integral is computed
by Gauss quadrature. This also works in situations close to the solitonic limit.

To treat the b-periods in this case, we take care of the fact that Ei ∼ Fi
in the solitonic limit. To obtain smooth integrands near Ei and Fi as well as
Ei+1 and Fi+1, we split the integral from Fi to Ei+1 into two integrals from
Fi to (Fi + Ei+1)/2 and from (Fi + Ei+1)/2 to Ei+1. In the former case we
use the substitution

x =
Ei + Fi

2
+

Fi − Ei
2

cosh t , t ∈
[
0, arcosh

Ei+1 − Ei
Fi − Ei

]
, (3.29)

and in the latter

x =
Ei+1 + Fi+1

2
+

Fi+1 − Ei+1

2
cosh t , t ∈

[
0, arcosh

Fi − Fi+1

Ei+1 − Fi+1

]
.

(3.30)

These substitutions lead to a regular integrand even in situations close to the
solitonic limit. After a linear transformation t = iπ(1 + l)/2, l ∈ [−1, 1], the
integrals are computed by Gauss quadrature.

The accuracy of the numerical method can be checked as before via the
antisymmetric part of the computed Riemann matrix or the vanishing of inte-
grals along trivial cycles. The exponential convergence of spectral methods is
observed in this case as discussed in Sect. 3.8 up to minimal distances between
the branch points of the order of 10−14 (see for instance [FK06] and the ex-
amples in Sect. 3.11, where at most 128 modes are used). Thus, the solitonic
limit can be reached numerically with machine precision.

3.10 Theta Functions

Theta functions are a convenient tool to work with meromorphic functions on
Riemann surfaces. We define them as an infinite series.

Definition 1. Let B be a g × g Riemann matrix. The theta function with
characteristic [p,q] is defined as

Θpq(z,B) =
∑

N∈Zg

exp {iπ 〈B (N + p) ,N + p〉+ 2πi 〈z + q,N + p〉} ,

(3.31)
with z ∈ C

g and p, q ∈ C
g, where 〈·, ·〉 denotes the Euclidean scalar product

〈N, z〉 =
∑g

i=1 Nizi.

The properties of the Riemann matrix ensure that the series converges ab-
solutely and that the theta function is an entire function on C

g. A character-
istic is called singular if the corresponding theta function vanishes identically.
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Of special importance are half-integer characteristics with 2p, 2q ∈ Z
g. A

half-integer characteristic is called even if 4〈p,q〉 = 0 mod 2 and odd other-
wise. Theta functions with odd (even) characteristic are odd (even) functions
of the argument z. The theta function with characteristic is related to the Rie-
mann theta function Θ, the theta function with zero characteristic Θ := Θ00,
via

Θpq(z,B) = Θ(z + Bp + q) exp {iπ 〈Bp,p〉+ 2πi 〈p, z + q〉} . (3.32)

The theta function has the periodicity properties

Θpq(z + ej) = e2πipjΘpq(z) , Θpq(z + Bej) = e−2πi(zj+qj)−iπBjjΘpq(z) ,

(3.33)

where ej is a vector in R
g consisting of zeros except for a 1 in jth position.

In the computation of the theta function we will always use the periodicity
properties (3.33). This allows us to write an arbitrary vector z ∈ C

g in the form
z = ẑ+N+BM with N,M ∈ Z

g, where ẑ is a vector in the fundamental cell
of the Jacobian, and to compute Θ(ẑ,B) instead of Θ(z,B) (they are identical
up to an exponential factor). In the following we will always assume that z is
in this fundamental cell.

The theta series (3.31) for the Riemann theta function (theta functions
with characteristic follow from (3.32)) is approximated as the sum

Θ(z|B) ≈
Nθ∑

N1=−Nθ
. . .

Nθ∑

Ng=−Nθ
exp {iπ 〈BN,N〉+ 2πi 〈z,N〉} . (3.34)

The value of Nθ is determined by the condition that terms in the series (3.31)
for ni > Nθ, i = 1, . . . , g have absolute values strictly smaller than some
threshold value ε which is typically taken to be of the order of 10−16. To
obtain an estimate for Nθ, we write

B = X + iY , z = x + iy , (3.35)

where X,Y,x,y are real. We can separate the terms in (3.34) into purely
oscillatory terms with absolute value 1 and real exponentials,

Θ(z|B) ≈
Nθ∑

N1=−Nθ
. . .

Nθ∑

Ng=−Nθ
exp {−π 〈YN,N〉 − 2π 〈y,N〉} × F , (3.36)

where F = exp {iπ 〈XN,N〉+ 2πi 〈x,N〉} is a purely oscillatory factor. Since
B is a Riemann matrix, Y is a real symmetric matrix with strictly positive
eigenvalues, i.e., there exists a special orthogonal matrix O such that

OYOt = diag(λ1, . . . , λg) (3.37)
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with 0 < λ1 ≤ . . . ≤ λg. Thus, we can write (3.36) in the form

Θ(z|B) ≈
Nθ∑

N1=−Nθ
. . .

Nθ∑

Ng=−Nθ

g∏

k=1

exp
{
−π(λkÑ2

k + 2ỹkÑk)
}
× F , (3.38)

where ỹ = Oy and Ñ = ON. Then the condition on Nθ is that the absolute
value of all terms with |ni| > Nθ in (3.36) is strictly smaller than ε, i.e.,

exp
{
−πλ1N

2
θ ± 2πỹ1Nθ

}
< ε . (3.39)

Since z is in the fundamental cell of the Jacobian, we can assume without loss
of generality that ỹi ≤ λi/2. This and (3.38) implies for Nθ

Nθ >
1
2

+
√

1
4
− ln ε

πλ1
. (3.40)

For a more sophisticated analysis of theta summations see [DHB+04]. In cases
where the eigenvalues are such that λg/λ1 # 1, a summation over a region
in the (n1, . . . , ng)-space delimited by an ellipse as in [DHB+04] rather than
over a hypercube will be more efficient. The summation (3.38) over the hyper-
cube has, however, the advantage that it can be implemented in Matlab for
arbitrary genus whilst making full use of Matlab’s vectorization algorithms
outlined below. Thus, a summation over an ellipse would be only more effi-
cient in terms of computation time for very extreme ratios of the eigenvalues
of Y. Instead of summing over an ellipse, in such a case we use a Matlab
implementation [FK09] of the Siegel transformation from [DHB+04] to treat
symplectically equivalent matrices Y with ratios of λg/λ1 close to 1 and a
smallest eigenvalue λ1 of the order 1.

To compute the theta functions we make again use of Matlab’s efficient
way to handle matrices. We generate a g-dimensional array containing all
(2Nθ + 1)g possible index combinations and thus all components in the sum
(3.34) which is then summed. To illustrate this we consider the simple example
of genus 2 with Nθ = 2. In this case, the summation indices are arranged in a
(2Nθ + 1) × (2Nθ + 1)-matrices. Each of these matrices (denoted by N1 and
N2) contains 2Nθ+1 copies of the vector −(2Nθ+1), . . . , 2Nθ+1. The matrix
N2 is the transposed matrix of N1. Explicitly, we have for Nθ = 2

N1 =

⎛

⎜⎜⎜⎜⎝

2 2 2 2 2
1 1 1 1 1
0 0 0 0 0
−1 −1 −1 −1 −1
−2 −2 −2 −2 −2

⎞

⎟⎟⎟⎟⎠
, N2 =

⎛

⎜⎜⎜⎜⎝

2 1 0 −1 −2
2 1 0 −1 −2
2 1 0 −1 −2
2 1 0 −1 −2
2 1 0 −1 −2

⎞

⎟⎟⎟⎟⎠
. (3.41)

The terms in the sum (3.34) can thus be written in matrix form:

exp
{

2iπ
(

1
2
N1 �N1B11 +N1 �N2B12 +

1
2
N2 �N2B22

+N1 � z1 +N2 � z2

)} , (3.42)
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where the operation N1 � N2 denotes that each entry of N1 is multiplied
with the corresponding entry of N2. Thus, the argument of exp in (3.42) is
a (2Nθ + 1) × (2Nθ + 1)-dimensional matrix. Furthermore, the exponential
function is understood to act not on the matrix but on each of its entries
individually, producing a matrix of the same size. The approximate value of
the theta function is then obtained by summing up all the entries of the matrix
(3.42).

The most time consuming operations in the computation of the theta
functions are the determination of the bilinear terms in (3.42) involving the
Riemann matrix. The limiting factor here is the size of the arrays which is
limited to 231 − 1 components on a 32 bit computer.

3.11 Hyperelliptic Solutions to Nonlinear Schrödinger
Equations

An important application of Riemann surfaces and theta functions are almost
periodic solutions to completely integrable partial differential equations. As an
example we will consider in this section solutions to the nonlinear Schrödinger
equations (NLS) which are given in terms of multi-dimensional theta functions
on hyperelliptic Riemann surfaces.

The focusing (ρ = −1) and defocusing (ρ = 1) NLS equations

iψt + ψxx − 2ρ|ψ|2ψ = 0 , x, t ∈ R, ψ ∈ C , (3.43)

have important applications, for instance in nonlinear fiber optics and hydro-
dynamics. The complete integrability of the equations was shown by Zakharov
and Shabat [ZS72]. Almost periodic solutions can be constructed on hyperel-
liptic Riemann surfaces, see [BBE+94] for further details and references. The
hyperelliptic curves of genus g appearing in the context of the NLS equations
are real, i.e., in the defining equation for the algebraic curve

y2 =
g+1∏

i=1

(z − Ei)(z − Fi) =: z2g+2 − S1z
2g+1 + z2gS2 + . . . , (3.44)

the branch points Ei and Fi are either all real (for the defocusing case) or
pairwise complex conjugate, Ei = F̄i, i = 1, . . . , g + 1 (for the focusing case).
The hyperelliptic solutions to the NLS equation can be written in the form

ψ(x, t) = A
θ(iVx + iWt−D + r)
θ(iVx + iWt−D)

exp(−iEx + iNt) ; (3.45)

here θ is the theta function associated to the curve (3.44), D ∈ C
g is an

arbitrary constant vector, r =
∫∞+

∞− ω, where ω is the vector of normalized
(
∮
ai

ωj = δij , i, j = 1, . . . , g) holomorphic differentials, A = C
√
ω0 with C a

complex constant, and the remaining quantities are defined via the integrals
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of meromorphic differentials dΩi normalized by the condition of vanishing
a-periods, and with single pole at infinity; the behavior of the integrals at
infinity is given by the relations (P ∼ ∞±)

Ω1(P ) = ±(x− E/2 + o(1)),

Ω2(P ) = ±(2x2 + N/2 + o(1)), (3.46)
Ω3(P ) = ±(lnx− (1/2) lnω0 + o(1));

the vectors V and W are the b-periods of Ω1 and Ω2, respectively.
To be more specific we introduce the basis of the homology shown in

Fig. 3.4 and choose Ωi(E1) = 0, i = 1, 2, 3. The reality conditions imply that
E, N and ω0 are real in the focusing and defocusing case. In the latter case, ω0

is positive, B is purely imaginary, and V, W and r are real. We have A = 2
√
ω0

up to a complex phase and D purely imaginary (up to lattice vectors). In the
focusing case ω0 is negative, the vectors V, W and the diagonal part of B
are purely imaginary. Furthermore, we have for the non-diagonal entries of B
that B̄ij = Bij +1, and r̄i = ri+1. This implies A = 2

√
−ω0 up to a complex

phase and D purely imaginary (up to lattice vectors).
To get explicit expressions for g ≥ 2, we write the holomorphic differentials

in the form ωi =
∑g
j=1 cijνj , i = 1, . . . , g, where ν is given in (3.27), and

dΩ3 = xgdx/y +
∑g

j=1 c
3
jνj , which implies with the symmetric functions Si

defined in (3.44)

Vi = 2cig, Wi = 4
(
ci(g−1) + cig

S1

2

)
, (3.47)

and

E = S1 + 2c3g, N = −2
(

2c3g−1 +
3
4
S2

1 − S2 + S1c
3
g

)
. (3.48)

The formulae (3.47) and (3.48) also hold in the elliptic case, if we formally
put quantities with index 0 equal to zero. For ω0 we use the expression

ω0 =
(
D∞+θ∗(0)

2θ∗(r)

)2

, (3.49)

where θ∗ is a theta function with an arbitrary non-singular odd characteristic,
and where DPΘ(z) :=

∑g
i=1 ωi(P )∂ziΘ(z).

3.11.1 Solitonic Limit in the Defocusing Case

As already briefly mentioned in Sect. 3.9 (for details see for instance
[BBE+94]), solitonic solutions can be obtained for many integrable equations
from finite gap solutions by degenerating the Riemann surface as follows:
for the defocusing case one starts (see [BBE+94]) with a surface with a real
cut [−α, α] (from −α via minus infinity to α). The remaining branch points
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collapse to double points which are chosen to be in the interval [−α, α]. To
obtain nontrivial solutions, the vector D has to contain half periods,

Di =
1
2
Bii + 2ηi, (3.50)

where ηi remains finite on the degenerate surface, but is otherwise arbitrary. If
we choose �ηi = 0, the reality conditions for the defocusing case are satisfied.
The resulting solitons do not tend to zero at infinity and are thus dark solitons,
i.e., they represent dark regions propagating on a background of light. In the
focusing case, the situation is more involved and will not be discussed here,
see [BBE+94].

3.11.2 Examples for the Defocusing NLS

In the defocusing case, we consider solutions which lead to solitons in the
degenerate case as described above. We show a typical genus 2 solution in
Fig. 3.5 for the Riemann surface with branch points −3,−2,−2 + ε, 1, 1 + ε, 3
and ε = 1; here and in the following we put u = |ψ|2.
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Fig. 3.5. Almost periodic solution to the defocusing NLS equation on a genus 2
surface

In the limit ε→ 0 in this example one ends up with the 2-soliton solution
which can be seen for ε = 10−14 in Fig. 3.6. Visibly the solution does not tend
to zero for x→∞.
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Fig. 3.6. Almost solitonic solution to the defocusing NLS equation on a genus 2
surface

A similar situation as in genus 2 is studied on a surface of genus 6 with
branch points

−5,−3,−3 + ε,−2,−2 + ε,−1,−1 + ε, 1, 1 + ε, 2, 2 + ε, 3, 3 + ε, 5.

The corresponding solution for ε = 0.5 can be seen in Fig. 3.7. The almost
periodic character of the solution is obvious from the figure. By degenerating
this surface (ε→ 0) we obtain a 6-soliton solution which is shown for ε = 10−14

in Fig. 3.8.

3.11.3 Examples for the Focusing NLS

A typical example for genus 2 is shown in Fig. 3.9 on the surface with the
branch points

−2 + i,−1 + i, 1 + i,−2− i,−1− i, 1− i.

Similarly a genus 6 solution for the Riemann surface with branch points

−3+ i,−2+ i,−1+ i, i, 1+ i, 2+i, 3+ i,−3− i,−2− i,−1− i,−i, 1− i, 2− i, 3− i

is shown in Fig. 3.10.
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Fig. 3.7. Almost periodic solution to the defocusing NLS equation on a genus 6
surface
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Fig. 3.8. Almost solitonic solution to the defocusing NLS equation on a genus 6
surface
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Fig. 3.9. Almost periodic solution to the focusing NLS equation on a genus 2 surface
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Fig. 3.10. Almost periodic solution to the focusing NLS equation on a genus 6
surface
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4.1 Introduction

Common numerical methods represent Riemann surfaces through algebraic
curves, see Chaps. 2 and 3. This seems natural because algebraic curves can
be used to define a Riemann surface, but this approach has some serious dis-
advantages: if one is interested in the corresponding Riemann surface only,
one needs to factorize algebraic curves with respect to birational maps. This
complicates the corresponding parameterization of Riemann surfaces. More-
over, a representation of a Riemann surfaces as a ramified multi-sheeted cov-
ering complicates the description of homology and integration paths, which
leads to complex algorithms. Schottky uniformization (see Chap. 1) is an
attractive alternative to describing Riemann surfaces in terms of algebraic
curves.

A Schottky group is a free, finitely generated, discontinuous group G that
is purely loxodromic, i.e., a Schottky group of rank N can always be gener-
ated by N loxodromic transformations σ1, . . . , σN . A classical theorem states
that for any Riemann surface R there exists a Schottky group G such that
R is conformally equivalent to the quotient Ω/G, where Ω denotes the set of
discontinuity of G [For29]. The number N of generators of the Schottky group
equals the genus of the associated Riemann surface. A loxodromic transfor-
mation σi is determined by its fixed points Ai and Bi and the loxodromic
factor μi (see (1.96), we refer to [Bob11], Sect. 1.8 for more details on Schot-
tky groups and uniformization). In other words, a Schottky group can be
parameterized by the data

S = {A1, B1, μ1, . . . , AN , BN , μN} ,

which are fixed points and loxodromic factors of their generators σ1, . . . , σN .
This provides a canonical way of parameterizing Riemann surfaces, which is
good-natured in the sense that the characteristics of the geometry can easily

A.I. Bobenko and C. Klein (eds.), Computational Approach to Riemann Surfaces, 165
Lecture Notes in Mathematics 2013, DOI 10.1007/978-3-642-17413-1 4,
c© Springer-Verlag Berlin Heidelberg 2011
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be preserved. This is unlike the situation in an algebraic curve representation
where minor changes of its coefficients can change the nature of singularities
or even the genus.

Finding the Schottky data for a given Riemann surface is an unsolved
problem. Further it is also unknown how to evaluate whether a set of Schottky
data yields a Riemann surface or not. But if all pairs of isometric circles of
generators specified by the data lie outside each other then the Schottky data
gives a Riemann surface. These Schottky groups are a special sub-class of so-
called classical Schottky groups to which we refer as iso-classical. The numerics
we present will be restricted to the iso-classical case.

Functions and differentials of the Riemann surface Ω/G are automorphic
on Ω. This yields explicit representations for functions, differentials, and inte-
grals in terms of Poincaré theta series. For example, normalized differentials
of the first kind can be expressed as (−2)-dimensional Poincaré theta series:

ωn (z) =
∑

σ∈Gn\G

(
1

σ (z)−Bn
− 1

σ (z)−An

)
dσ (z) . (4.1)

If the series

ωn (z) =
∑

σ∈G/Gn

(
1

z − σ (Bn)
− 1

z − σ (An)

)
dz (4.2)

are absolutely convergent, then they define holomorphic differentials normal-
ized over a Schottky generic basis. Their integrals are then given by

Ωn (z) =
∫ z

∞
ωn =

∑

σ∈G/Gn
log

z − σ (Bn)
z − σ (An)

. (4.3)

The corresponding period matrix is given by

Bnm = δnm logμn +
∑

σ∈Gm\G/Gn,σ �=id
log {Bm, Am, σ (Bn) , σ (An)} , (4.4)

where the curly brackets indicate the cross-ratio

{a, b, c, d} =
a− c

a− d
· b− d

b− c
.

These series are the chief ingredient for any numerics regarding Riemann sur-
faces via Schottky groups but they do not necessarily converge in the general
case. In fact, it is unknown whether an absolute convergent series exists for a
given Riemann surface.

We developed sufficient a priori convergence criteria and error estimates
which are given in terms of the Schottky uniformization data alone, and guar-
antees convergence for sufficiently small isometric circles. Such estimates have
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been given first by Burnside [Bur92], see also [FK65,Bak97]. However, these
authors considered only principle mathematical questions about the conver-
gence. They used rather primitive estimates to show that for sufficiently small
circles the series converge. Finding general convergence criteria remains an in-
teresting open problem.

These estimates have been designed such that they can be evaluated ef-
ficiently as well as be seamlessly used in very effective pointwise evaluation
algorithms which guarantees prescribed error bounds. We present these cri-
teria, estimates and evaluation algorithms for the above Poincaré series and
show results and benchmarks of numerically challenging examples.

4.2 Convergence Conditions

Let G be the free group generated by σ1, . . . , σN ∈ G. Each σ ∈ G has a
unique representation

σ = σj1i1 . . . σjkik

with jl ∈ {−1, 1} , il ∈ {1, . . . , N}, and jlil 	= −jl+1ij+1. Denote by

[σ] = [j1i1, . . . , jkik]

the word of σ associated to the generators σ1, . . . , σN and by

|σ| = k

its length. Denote further by Gn the subgroup generated by σn and define its
cosets as:

G/Gn = {σ |[σ] = [. . . , r] , |r| 	= n}
Gn \G = {σ |[σ] = [s, . . .] , |s| 	= n}

Gm \G/Gn = {σ |[σ] = [s, . . . r] , |s| 	= m ∧ |r| 	= n} .

Let Cn (C′
n) be isometric circles of the iso-classical Schottky group G as in

Sect. 1.8. We denote Cn and C′
n also by C1

n and C−1
n respectively. Their open

interior are denoted by Dn or D1
n and D′

n or D−1
n . Note that

σim

(
C \Di

m

)
= D−i

m ,

because Schottky groups map the outside of Cn onto the inside of C′
n. This

yields

Lemma 4.2.1 For σ(l) = σi1m1
· . . . · σilml ∈ G we have

σ(l+1)

(
C \Dil+1

ml+1

)
= σ(l)

(
D−il+1
ml+1

)
⊂ σ(l)

(
C \Dil

ml

)
.
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For σ with [σ] = [im, . . .] we have σ (F ) ⊆ D−i
m which implies that for all

σ ∈ Gn \ G one has σ (F ) ∩D±1
n = ∅, and dist (σ (F ) , F ) > 0 for all σ ∈ G

with |σ| > 1. We now define constants measuring the displacement of the
fundamental domain F under an element of the Schottky group. Let σ ∈ G
and define

k (P ;σ) = minz∈F |P − σ (z)|
K (P ;σ) = maxz∈F |P − σ (z)| . (4.5)

Let σ(l) = σi1m1
· . . . · σilml ∈ G and P /∈ D−i1

m1
. We conclude that

0 ≤ k
(
P ;σ(1)

)
< k

(
P ;σ(2)

)
< . . . < liml→∞ k

(
P ;σ(l)

)

∞ > K
(
P ;σ(1)

)
> K

(
P ;σ(2)

)
> . . . > liml→∞ K

(
P ;σ(l)

)
.

(4.6)

For iso-classical Schottky groups, the limits coincide, i.e.,

lim
l→∞

k
(
P ;σ(l)

)
= lim

l→∞
K
(
P ;σ(l)

)
, (4.7)

which follows from the next lemma.

Lemma 4.2.2 Let G be an iso-classical Schottky group and σ(l) = σi1m1
· . . . ·

σilml ∈ G be an infinite sequence. Then the depending sequence of sets σ(l) (F )
contracts to a point.

We will show that
∣∣∣
(
σ(l)

)′ (z)
∣∣∣ =

∣∣∣
(
σi1m1

)′ (
σi2m2
· . . . · σilml (z)

)∣∣∣ · . . . ·
∣∣∣∣
(
σil−1
ml−1

)′
σilml (z)

∣∣∣∣
∣∣∣
(
σilml

)′
(z)

∣∣∣

vanishes in the limit. A computation shows that

∣∣∣
(
σin
)′

(z)
∣∣∣ =

(
Rn

|z − P i
n|

)2

,

where P i
n is the center and Rn the radius of Ci

n. Therefore
∣∣σin ′ (z)

∣∣ < 1 for
all z /∈ Di

n. For τ = σinσ we define:

θ (τ) = max
z∈F

∣∣∣
(
σin
)′

(σ (z))
∣∣∣ = max

z∈F
Rn

|σ (z)− P i
n|

=
Rn

k (P i
n;σ)

.

Thus we have ∣∣∣σ′
(l) (z)

∣∣∣ ≤ θ2
(
σ(l)

)
· . . . · θ2

(
σ(1)

)
.

which proves the claim because Lemma 4.2.1 guarantees that

θ
(
σ(l)

)
< θ

(
σ(l−1)

)
< . . . < θ

(
σ(1)

)
= 1 . (4.8)

Now we can give a sufficient condition for the absolute convergence of
series (4.3).
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Theorem 4.2.3 Let G be iso-classical Schottky group of rank N . If there
exists an index l with

2N − 1 < θ−2
l , (4.9)

where θl = maxσ∈G,|σ|=l+1 θ (σ), then the series (4.3) for the normalized in-
tegrals of the first kind are absolutely convergent.

Inequality (4.8) implies that the sequence of θl is strictly monotone, i.e.,

0 < θ∞ < . . . < θl+1 < θl < . . . < θ0 = 1 .

If (4.9) holds for one index, it will also be true for all larger indices and for
the limit as well. Let

Gn (σ) = log
z − σ (Bn)
z − σ (An)

denote a term of the infinite sum (4.3). Substituting log (z − w) = f (w) in
Gn (σ) yields

|Gn (σ)| = |f (σ (Bn))− f (σ (An))|
≤ max

w∈σ(F )
|f ′ (w)| · |σ (Bn)− σ (An)|

=
1

k (z;σ)
|σ (Bn)− σ (An)| .

Let σ(l) = σilml · . . . · σ
i1
m1
∈ G be an infinite sequence growing this time to the

left. Then we have
∣∣σ(l+1) (z)− σ(l+1) (w)

∣∣ ≤ θ2
(
σ(l+1)

) ∣∣σ(l) (z)− σ(l) (w)
∣∣ ,

so that
∣∣Gn

(
σ(l+k)

)∣∣ ≤
∣∣σ(l) (Bn)− σ(l) (An)

∣∣
k
(
z;σ(l+k)

) θ2k
l .

We would like to give a bound for k
(
z;σ(l+k)

)
(from below) by k

(
z;σ(l)

)
, but

we cannot directly take advantage of (4.6) because we need multiplications
from the left for σ(l), but the estimates are for multiplications from the right.
To address this we introduce

k (z; l) = min
σ∈G,|σ|=l

k (z;σ) ,

for which k (z; l) < k (z; l + 1) holds. Thus we have k
(
z;σ(l+k)

)
< k (z; l + k),

which implies

∣∣Gn

(
σ(l+k)

)∣∣ ≤
∣∣σ(l+k) (Bn)− σ(l+k) (An)

∣∣
k (z; l + k)

≤
∣∣σ(l) (Bn)− σ(l) (An)

∣∣
k (z; l)

θ2k
l .

(4.10)

This implies the convergence of series (4.3), because G/Gn includes exactly
(2N − 2) (2N − 1)l elements of length l + 1.
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The inequality above will be essential when we develop a posteriori criteria
for an evaluation algorithm in Sect. 4.4.

The proof of the convergence of the Poincaré theta series is done with a
slightly different representation of the series (4.2). Let

Hn (z;σ) =
(

1
σ (z)−Bn

− 1
σ (z)−An

)
(γσz + δσ)

−2

where (
ασ βσ
γσ δσ

)
∈ PSL (2,C)

denotes the matrix representation of a linear fractional transformation σ.
A short computation shows that for all σ ∈ G we have

H (z;σ) =
1

z − σ−1 (Bn)
− 1

z − σ−1 (An)
, (4.11)

so that
ωn (z) =

∑

σ∈Gn\G
Hn (z;σ) dz , (4.12)

which is a (-2)-dimensional Poincaré theta series.

Theorem 4.2.4 The theta series (4.12) corresponding to a Schottky group G
are absolutely convergent iff

Γn =
∑

σ∈Gn\G,σ �=id

1
|γσ|2

<∞ . (4.13)

For genus N = 1 the coset Gn \G includes the identity only, therefore there
is nothing to show. For N > 1 let σ ∈ Gn \ G. Since σ−1 (∞) = −δσ/γσ we
have

|γσz + δσ| =
∣∣z − σ−1 (∞)

∣∣ |γσ| ,

so that
l (σ, n)

K (z;σ−1)2
1
|γσ|2

≤ |Hn (z;σ)| ≤ L (σ, n)
k (z;σ−1)2

1
|γσ|2

, (4.14)

where

l (σ, n) =
|An −Bn|

K (An;σ)K (Bn;σ)
and L (σ, n) =

|An −Bn|
k (An;σ) k (Bn;σ)

.

Because of (4.7) we can guarantee positive upper and lower bounds for all
|σ| > 1, which proves the claim.
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For N > 1, we have Gn \G ⊂ G = ∪n=1,...,NGn \G, so that

Γn < Γ <

N∑

n=1

Γn with Γ =
∑

σ∈G,σ �=id

1
|γσ|2

,

which implies that all ωn, n = 1, . . . , N converge absolutely iff Γ < ∞. This
also holds for N = 1. Indeed, a simple estimation gives

1
|γσk |2

=
|A−B|2
∣∣∣1−

√
μk
∣∣∣
2 |μ|

k ≤
(
|A−B|
1−

∣∣√μ
∣∣

)2

|μ|k

and therefore

Γ <

(
|A−B|
1−

∣∣√μ
∣∣

)2
2 |μ|

1− |μ| <∞ .

Corollary 4.2.5 All ωn, n = 1, . . . , N converge absolutely iff Γ <∞ .

Another consequence of Theorem 4.2.4 is that if ωn converges absolutely for
one z0 ∈ F , then it also converges for all z ∈ F . None of these results allow
us to estimate any error or deliver a criterion that can be evaluated computa-
tionally. This is also true for the next lemma, but it shows the right direction.

Lemma 4.2.6 For σ ∈ G with [σ] = [il, . . . , jr], denote

κL (σ) =

∣∣∣∣∣
γσ

γσ−j
l σ

∣∣∣∣∣ and κR (σ) =

∣∣∣∣∣
γσ

γσσ−i
r

∣∣∣∣∣ .

Then κL (σ) = κR
(
σ−1

)
, and if

2N − 1 < κ2 with κ = inf
σ∈G,|σ|>1

κL/R (σ) ,

then Γ is finite.

For any κ̃ < κ, and hence also for all κ̃ ∈ ]2N − 1, κ[ there exists k0 such
that κ̃ < κL/R (σ) for all σ ∈ G with |σ| ≥ k0, and thus for σ(k) = σi1s1 · . . . ·σiksk
we have

∣∣γσ(k)σ

∣∣ =

∣∣∣∣∣
γσ(k)σ

γσ(k−1)σ

∣∣∣∣∣ . . .
∣∣∣∣∣
γσ(k0+1)σ

γσ(k0)

∣∣∣∣∣

∣∣∣γσ(k0)

∣∣∣ > κk−k0
∣∣∣γσ(k0)

∣∣∣ .

Because of the fact that there are exactly 2N (2N − 1)k−1 transformations
of length k, we have

∑

|σ|≥k0

1

|γσ|2
≤

∑

|σ|≥k0

1
κ̃2|σ| ≤

κ̃2k0

γ2
k0

2N
2N − 1

k∑

i=k0

(
2N − 1

κ̃2

)k

where γn = min|σ|=n |γσ|.
To obtain error estimates one has to control κL/R.
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Lemma 4.2.7 Let G be a Schottky group generated by σ1, . . . , σN with fixed
points An, Bn, n = 1, . . . , N . For σ ∈ G with [σ] = [. . . , ir] we have

κR (σ) =
maxs

∣∣∣Cs
r + δτ

γτ

∣∣∣
√
|μisr | −

∣∣∣C−s
r + δτ

γτ

∣∣∣
√∣∣μ−is

r

∣∣

|Ar −Br|
= κL

(
σ−1

)
(4.15)

with C1
r = Ar , C

−1
r = Br and τ = σσ−i

r .

We have γσ = γτασir + δτγσir . Using the representation in terms of the
Schottky data (1.96), one obtains

γσ
γτ

= ασir + γσir
δτ
γτ

=
1

Ar −Br

(
Ar
√

μir −Br/
√

μir +
(√

μir − 1/
√

μir

) δτ
γτ

)

=
1

Ar −Br

((
Ar +

δτ
γτ

)√
μir −

(
Br +

δτ
γτ

)√
μ−i
r

)
.

The fact that τ−1 (∞) = −δτ/γτ yields

k
(
Cs
r ; τ

−1
)
≤
∣∣∣∣C

s
r +

δτ
γτ

∣∣∣∣ ≤ K
(
Cs
r ; τ

−1
)
.

Let σ = τσir with |σ| > 0. We let

κR (σ) =
1

|Ar −Br|

(
k
(
C s̃
r ; τ

−1
)√
|μis̃r | −K

(
C−s̃
r ; τ−1

)√∣∣μ−is̃
r

∣∣
)

,

where s̃ takes the maximum in (4.15), e.g.

κR (σ) =
1

|Ar −Br|

(∣∣∣∣C
s̃
r +

δτ
γτ

∣∣∣∣
√
|μis̃r | −

∣∣∣∣C
−s̃
r +

δτ
γτ

∣∣∣∣
√∣∣μ−is̃

r

∣∣
)

.

Note that κR (σ) < κR (σ).

Lemma 4.2.8 Let G be an iso-classical Schottky group. Then for all ε > 0
there exists nε such that

κR (σ)− κR (σ) < ε ∀ |σ| ≥ nε .

A computation yields

κR (σ)− κR (σ) ≤

√
|μis̃r |+

√∣∣μ−is̃
r

∣∣

|Ar −Br|
diam

(
τ−1 (F )

)
,

which implies the claim along the lines of the proof of Lemma 4.2.2.
This leads to a result that allows us to check the condition 2N − 1 < κ2

by evaluating κR (σ) for finitely many transformations σ.
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Lemma 4.2.9 Let G be an iso-classical Schottky group and

κn = min
|σ|=n

κR (σ) .

Then κn ≤ κ|σ| ≤ κR (σ) < κR (σ) for all n ≤ |σ|, and we have

κ1 < . . . < κn < . . . < κ∞ = κ .

Let σ = σjl τσ
i
r with |σ| = n + 1 and κn+1 = κR (σ). Inequality (4.6)

guarantees

k
(
C s̃
r ;σ

)
> k

(
C s̃
r ; τσ

i
r

)
and K

(
C s̃
r ;σ

)
< K

(
C s̃
r ; τσ

i
r

)
,

so that
κn ≤ κR

(
τσir

)
< κR (σ) = κn+1 .

To prove that κ∞ = κ, let σ(n) be a sequence satisfying κn = κR
(
σ(n)

)

and υ(n) one with the property

κR
(
υ(n)

)
= min

|σ|=n
κR (σ) .

Moreover limn→∞ κR
(
υ(n)

)
= κ implies

κn = κR
(
σ(n)

)
≤ κR

(
υ(n)

)
< κR

(
υ(n)

)
< κ + ε ,

so that κ∞ ≤ κ . On the other hand, Lemma 4.2.8 guarantees that κR
(
σ(l)

)

and κR
(
σ(l)

)
have the same limit and thus κ ≥ limn→∞ κR

(
σ(n)

)
= κ.

From the last result, Theorem 4.2.4, and Lemma 4.2.6 we obtain an evalu-
able criterion for the convergence of the Poincaré theta series giving normal-
ized differentials of the first kind.

Theorem 4.2.10 Let G be an iso-classical Schottky group of rank N . If there
exists an index l with

2N − 1 < κ2
l ,

then the series (2) giving normalized differentials of the first kind are abso-
lutely convergent.

4.3 Error Estimates

Throughout this section, let G be always an iso-classical Schottky group. For
a subset S of G/Gn, we approximate Ωn by

Ω̂n (z;S) =
∑

σ∈S
Gn (σ) .
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The corresponding error is

εΩn (z;S) =
∣∣∣Ωn (z)− Ω̂n (z;S)

∣∣∣ .

Let σ(l) = σilnl · . . . · σi1n1
be a leftward growing sequence in G/Gn i.e., n1 	= n.

Then the proof of Theorem 4.2.3 provides estimates for Gn

∣∣Gn

(
σ(l+k)

)∣∣ ≤ CΩn
(
z;σ(l+k)

)
≤ CΩn

(
z;σ(l)

)
θ2k
l , (4.16)

with

CΩn (z;σ) =
|σ (Bn)− σ (An)|

k (z; |σ|) .

Let σ = σiknk · . . . ·σ
i1
n1
∈ G. Then σ(l) = σilnl · . . . ·σ

i1
n1

, l = 1, . . . , k are called
suffixes of σ. The identity element is a suffix of any group element. If a set
S includes all the suffixes of its elements it is called suffix closed. The set of
suffixes of a subset S of G is called suffix closure and denoted by S

s
. Relation

(4.16) shows that the subset S of G/Gn ⊂ G which is used for approximation
should be suffix closed.

The boundary ∂sS of a suffix closed subset S, given by

∂sS =
{
σ ∈ S−1

∣∣∣{σ}
s ∩ S−1 = {σ}

}
,

has the property that for all σ ∈ S−1 it includes exactly one element that is
a suffix of σ. This enables a natural projection

πS : S−1 → ∂sS

σ �→ ∂sS ∩ {σ}s .

The set π−1
S (τ) consists of all σ ∈ S−1 that have τ as suffix. The set

π−1
S (τ) = Cones (τ) =

{
σ ∈ G

∣∣∣τ ∈ {σ}
s
}

is called the suffix cone.

Corollary 4.3.1 Let S be a suffix closed subset. Then we have

S−1 = ∪̇σ∈∂sSCones (σ) .

Lemma 4.3.2 Let S be a suffix closed subset of G/Gn. If 2N − 1 < θ−2
|τ | for

all τ ∈ ∂sS , then

εΩn (z;S) =
∣∣∣Ωn (z)− Ω̂n (z;S)

∣∣∣ <
∑

τ∈∂sS
ε̂Ωn (z; τ) = ε̂Ωn (z;S) ,

with ε̂Ωn (z; τ) = CΩn (z; τ)R
(
θ2
|τ |
)

and

R (q) =
∑

σ∈Cones(τ)
q|σ|−|τ | = (1− (2N − 1) q)−1

.
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We have ∣∣∣Ωn (z)− Ω̂n (z;S)
∣∣∣ <

∑

σ∈S−1

|Gn (z;σ)| ,

so that in light of Corollary 4.3.1 we need to show
∑

σ∈Cones(τ)
|Gn (z;σ)| < ε̂Ωn (z; τ) .

Relation (4.16) yields
∑

σ∈Cones(τ)
CΩn (z;σ) < CΩn (z; τ)

∑

σ∈Cones(τ)
θ
2(|σ|−|τ |)
|τ | = ε̂Ωn (z; τ) ,

because there are exactly (2N − 1)k transformations in Cones (τ) of length
|τ |+ k.

To approximate the elements of the period matrix Bnm by

B̂nm =
∑

σ∈S
Bnm (σ) ,

let now S be a suffix closed subset of Gm \G/Gn. The associated error will be
defined like the one above and denoted by εBnm (S) . Using the representation
Bnm (σ) = Gm (An) + Gm (Bn), we have in analogy to (4.9)

∣∣Bnm
(
σ(l+k)

)∣∣ ≤ CBnm
(
σ(l+k)

)
≤ CBnm

(
σ(l)

)
θ2k
l ,

with
CBnm (σ) = CΩm (An) + CΩm (Bn) .

Summing up the error is more difficult then before. We have

εBnm (S) =
∣∣∣Bnm − B̂nm (S)

∣∣∣ <
∑

σ∈Gm\G/Gn\S
|Bnm (σ)| .

Since S ⊂ Gm \ G/Gn = (Gm \G) ∩ (G/Gn) , we get a simular result to
Corollary 4.3.1:

(Gm \G/Gn) \ S = (Gm \G) ∩ ((G/Gn) \ S)
= (Gm \G) ∩ ∪̇σ∈∂sSCones (σ)
= ∪̇σ∈∂sSConesm (σ) ,

where Conesm (σ) = Cones (σ) ∩Gm \G. This yields furthermore

εBnm (S) <
∑

τ∈∂sS

∑

σ∈Conesm(τ)

|Bnm (σ)| <
∑

τ∈∂sS
CBnm (τ)

∑

σ∈Conesm(τ)

θ
2(|σ|−|τ |)
|τ |

which leads to
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Lemma 4.3.3 Let S be a suffix closed subset of Gm \G/Gn. If 2N−1 < θ−2
|τ |

for all τ ∈ ∂sS, then

εBnm (S) =
∣∣∣Bnm (z)− B̂nm (S)

∣∣∣ <
∑

τ∈∂sS
ε̂B̂nm (τ) = ε̂Bnm (S)

with ε̂Bnm (τ) = CBnm (τ)Rm (τ ; q) and

Rm (σ; q) =
∑

σ∈Conesm(τ)

q|σ|−|τ | = (2N − 2)
q

1 + q
R (q) +

{ 1
1+q σ ∈ Gm \G
0 otherwise

The derivation of expressions for Rm (τ ; q) is lengthy but straight forward.
We could have estimated Rm (τ ; q) by R (q), but we need the accuracy of
Lemma 4.3.3. For slowly converging series where q almost equals 1/ (2N − 1)
we get an improvement by a factor of 1−q. For small q, i.e., for fast converging
series, Rm (σ; q) and R (q) almost coincide for σ ∈ Gm \G, but for σ /∈ Gm \G
Rm (σ; q) gets small compared to R (q).

In analogy to Ωn we approximate ωn by

ω̂n (z;S) =
∑

σ∈S
Hn

(
z;σ−1

)
dz

and denote the associated error by εωn (z;S). The proof of Theorem 4.2.4
provides estimates for Hn. Relation (4.14) guarantees:

∣∣Hn

(
z;σ−1

)∣∣ ≤
L
(
σ−1, n

)

k (z;σ)2
1
|γσ| 2

.

Let σ(l) = σilnl · . . . · σ
i1
n1

be a leftward growing sequence in G/Gn, i.e., n1 	= n.

The definition of L and inequality (4.6) imply that L
(
σ−1

(l+k)

)
< L

(
σ−1

(l)

)
,

which yields in combination with k
(
z;σ(l+k)

)
< k (z; l) and Lemma 4.2.9:

∣∣∣Hn

(
z;σ−1

(l+k)

)∣∣∣ ≤ Cωn
(
z;σ(l+k)

)
≤ Cωn

(
z;σ(l)

)
κ−2k
l , (4.17)

where l > 1,

Cωn (z;σ) =
L
(
σ−1, n

)

k (z; |σ|)2
1
|γσ|2

.

In analogy to Lemma 4.3.2, we conclude

Lemma 4.3.4 Let S be a suffix closed a subset of G/Gn. If 2N − 1 < κ2
|τ |

for all τ ∈ ∂sS, then

εωn (z;S) = |ωn (z)− ω̂n (z;S)| <
∑

τ∈∂sS
ε̂ωn (z; τ) = ε̂ωn (z;S)

with ε̂ωn (z; τ) = Cωn (z; τ)R
(
τ ;κ−2

|τ |
)
.
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The weak spot of our estimates is that we majorize 1/k
(
z;σ−1

)
with

1/k (z; |σ|). This can be rather bad if the radii of the isometric circles differ
significantly. To some exten this can be cured but at the cost of technical
complications (compare [Sch05] pp. 30–37).

4.4 Evaluation Methods

Theorems 4.2.3 and 4.2.10 provide sufficient conditions for the convergence of
the series for holomorphic differentials and integrals. Ωn converges if

qΩ∞ = (2N − 1) θ2
∞ < 1 , (4.18)

and ωn converges if
qω∞ = (2N − 1)κ−2

∞ < 1 . (4.19)

The monotone series (q�l ) converges very fast and experiments show that
three terms suffice to extrapolate the limit with a high accuracy. Figure 4.1
shows the analysis of the convergence criteria (4.18) and (4.19) for several
examples taken from the family of Riemann surfaces that are associated with
constant mean curvature tori [Bob91]. These Schottky groups possess an anti-
holomorphic involution in addition to the hyperelliptic one and are Fuchsian
groups of the second kind (see Chap. 1), for which the convergence is known .
All our examples of genus 2 are circle decomposable (see Chap. 1) which also
implies the convergence. The examples show that our criteria can guarantee
convergence for integrals, but at the same time fail for differentials. In all
cases we have examined the integrals converge faster than the differentials. It
is remarkable that the criteria can still guarantee convergence when the circles
almost touch. The parameters (4.18) and (4.19) q�∞ are good indicators for
the speed of convergence. For good numerical results these values should not
be too close to 1. The first example in Fig. 4.1 describes the spectral curve
(of genus 2) of the famous Wente torus having a threefold symmetry (see
[Hei95,Bob08]). This is already at the limit of what we can handle with this
method and thus a good candidate for test cases.

We need to determine a suffix closed subset S� (z; ε) of G/Gn for a given
accuracy ε > 0 such that ε� (z;S� (z; ε)) < ε. For efficiency reasons as well as
for numerical stability the subset should be as small as possible.

Let G be an iso-classical Schottky group and l the smallest integer such
that q�l < 1. In order to use one of the Lemmas 4.3.2, 4.3.3, and 4.3.4, any
suffix closed subset must contain all elements with a word length less than or
equal to l. We denote the set of those elements with

Sn (l) = {σ ∈ G/Gn ||σ| ≤ l} ,

which is also a suffix closed subset.
A straightforward approach to determine a smallest suffix closed subset is

the following
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A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 1.5729726

2 2.1919203 0.6089423

3 0.7095799 0.6026912

4 0.7008699 0.5972790

5 0.6937671 0.5972347

6 0.6937057 0.5971962

A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 2.9883689

2 5.5728355 0.9239982

3 1.1721161 0.9228728

4 1.1678997 0.8975555

5 1.1295999 0.8975374

6 1.1295356 0.8971324

A(1)

B(1) A(2)

B(2)

l qω
l qΩ

l

1 - 2.4897787

2 6.5114680 1.1106899

3 1.6407322 1.0831381

4 1.5694645 1.0162737

5 1.4367818 1.0148276

6 1.4333759 1.0113023

A(1)

B(1) A(2)

B(2)
l qω

l qΩ
l

1 - 0.2075865

2 0.2221489 0.1390086

3 0.1452401 0.1379418

4 0.1440661 0.1378807

5 0.1439990 0.1378796

6 0.1439978 0.1378795

Fig. 4.1. Analysis of the convergence conditions (4.18) and (4.19) for several
examples taken from the family of Riemann surfaces of genus 2 giving constant
mean curvature tori. The first example is the Riemann surface of the Wente torus
with threefold symmetry
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Algorithm 4.4.1 Let ε > 0, G an iso-classical Schottky group and l the
smallest integer such that q�l < 1:

1. Put S(i=1) = Sn (l) .
2. If ε̂

(
z;S(i)

)
< ε, put S� (z; ε) = S(i) and finish.

3. Find σ(i) ∈ ∂sS(i) with C�
(
z;σ(i)

)
= maxσ∈S(i)

C� (z;σ) .
4. Put S(i+1) = S(i) ∪

{
σ(i)

}
.

5. Put i = i + 1 and continue with Step 2.

The algorithm above is simple and gives the optimal result, but Step 3 makes
it rather expensive. A different approach is inspired by the following property
of the boundary of a suffix closed subset:

Corollary 4.4.2 Let S be a suffix closed subset G/Gn. Then

1 =
2N − 1
2N − 2

∑

σ∈∂sS
(2N − 1)−|σ|

.

Let l = maxσ∈S |σ|. Then the boundary ∂sSn (l) ⊂ S−1. π−1
S (σ) contains

exactly (2N − 1)l+1−|σ| transformations of word length l + 1, i.e.,

#
(
π−1
S|∂sSn(l)

)
= (2N − 1)l+1−|σ|

,

which implies

1 =
1

(2N − 2) (2N − 1)l
∑

σ∈∂sSn(l)

1

=
1

(2N − 2) (2N − 1)l
∑

σ∈∂sS

∑

σ̂∈π−1
S|∂sSn(l)

1

=
1

(2N − 2) (2N − 1)l
∑

σ∈∂sS
(2N − 1)l+1−|σ|

.

This property similar to a partition of 1 like yields the following

Algorithm 4.4.3 Let ε > 0, G an iso-classical Schottky group and l the
smallest integer such that q�l < 1:

1. Put S(i=1) = Sn (l) .

2. Put S̃(i) =
{
σ ∈ ∂sS(i)

∣∣∣ε̂� (z;σ) > 2N−1
2N−2 (2N − 1)−|σ|

ε
}

.

3. If S̃(i) = {∅}, put S� (z; ε) = S(i) and finish.
4. Put S(i+1) = S(i) ∪ S̃(i) .
5. Put i = i + 1 and continue with Step 2.
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Fig. 4.2. Absolute (left column) and argument values (right column) of Ω1(top row)
and ω1(bottom row) for the Wente torus with threefold symmetry

This method offers a good trade-off between the size of S� (z; ε) on one hand
and computational cost on the other.

In Step 2 of Algorithm 4.4.3 we stay for all σ ∈ ∂sS(i) \ S̃(i) below the
threshold ε̂� (z;σ). We can therefore increase ε by

2N − 1
2N − 2

(2N − 1)−|σ|
ε− ε̂� (z;σ)

after each test. We will refer to this optimized version as Algorithm 4.4.3�.
The crucial constants Cω (z;σ) and CΩ (z;σ) contain a computationally

fairly inexpensive z-independent factor and an expensive z-dependent factor
k|σ| (z)

−p� , with p = 1 for Ωn and Bnm, and p = 2 for ωn. The complexity
of the computation of kl (z) grows exponentially in l. Thus it is inevitable to
replace kl (z) by kl̃ (z) with a small l̃ = 1, 2, 3 ≤ l. This is negligible, because
kl (z) converges very fast, particularly with respect to the fact that we earlier
replaced k (z;σ) by k|σ| (z). At this point we have reduced our evaluation
methods to more or less elementary operations. Figure 4.2 shows plots, again
for the Riemann surface of genus 2 describing the Wente torus with threefold
symmetry, of the integral Ω1 and of the differential ω1 of first kind.
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How rigorous are our estimates? We gave an estimate for the absolute
value series. Let us denote them by |Ω|n and |ω|n. Their approximation for a
given suffix closed subset S of G/Gn is given by

∣∣∣Ω̂
∣∣∣
n

(z;S) =
∑

σ∈S
|Gn (z;σ)| and

|ω̂|n (z;S) =
∑

σ∈S

∣∣Hn

(
z;σ−1

)∣∣ .

Plots of the defects d� (z; ε) = |�|n (z)−|̂�|n (z;S� (z; ε)) will reveal the results
of our effort and show how rigorous our estimates are. To approximate the
defect d� (z; ε) we approximate |�|n (z) by |�̂|n (z;S� (z; ε̃)), where ε̃ is signifi-
cantly smaller than ε. For a relative error of 10% ε̃ should be 10 times smaller
than the resulting minimum of d� (z; ε).

The algorithm manages to keep the defect dΩ1

(
z; 10−3

)
in the selected

clipping in the range of [1.5, 2.3] · 10−4 and dω1

(
z; 10−3

)
in [0.7, 2.3] · 10−4.

The described algorithms are implemented in java and freely avail-
able as part of the JTEM (Java Tools for Experimental Mathematics,
http://www.math.tu-berlin.de/jtem/) software project.
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5.1 Introduction

It is a consequence of the uniformization theorem of Koebe and Poincaré that
any smooth complex algebraic curve C of genus g > 1 is conformally equivalent
to H/GF where H is the upper-half complex plane and GF ∈ PSL2(R) is a
Fuchsian group. On the other hand, C is also known to be equivalent to Γ/GS

where Γ is some domain in the Riemann sphere and GS is a Schottky group
GS ∈ PSL2(C) where the fundamental region associated with GS is multiply
connected.

This paper is concerned with the matter of uniformizing real hyperelliptic
M -curves of the form

y2 =
2g+2∏

j=1

(x− ej) (5.1)

where the constants {ej|j = 1, ..., 2g + 2} are distinct real numbers. The curve
(5.1) has genus g. Such a curve admits both an antiholomorphic involution
given by

(x, y) �→ (x, y) (5.2)

and a hyperelliptic involution given by

(x, y) �→ (x,−y) . (5.3)

In Chap. 1 it was shown that hyperelliptic curves of this kind can be uni-
formized by Schottky groups of Fuchsian type (with essentially no difference
between the two uniformizations described above), and this uniformization
was performed there by representing the relevant mathematical objects in
terms of Poincaré theta series (note also that, in his contribution to this
book, M. Schmies develops a new algorithm for the calculation of Poincaré
theta series and includes the relevant error estimates). The purpose of the
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present chapter is to demonstrate an alternative approach using a special
function called the Schottky-Klein prime function associated with the under-
lying Riemann surface.

The uniformization of algebraic curves is an old problem that has attracted
the attention of many investigators. Some exact results are known for special
curves, especially those with large groups of automorphisms (e.g. [Kul97]).
There has been much recent attention, however, on the numerical uniformiza-
tion problem. Buser and Silhol [BS01], for example, consider real hyperelliptic
curves. They start with a compact Riemann surface given as the quotient of
the Poincaré upper-half plane divided by the action of a Fuchsian group. They
consider the hyperbolic (2g + 2)-gon associated with this group and compute
the period matrix of the curve in terms of the conformal capacities of certain
harmonic functions in this polygon. This is done numerically. Armed with
this period matrix, they determine the algebraic equation of the hyperelliptic
curve using theta characteristics. The numerical Schottky uniformization of
hyperelliptic M-curves, as the topic arises in generating finite-gap solutions of
integrable partial differential equations, has been solved in [BK87,Bob88] (the
corresponding explicit uniformization map is presented in the monograph by
Belokolos et al. [BBE+94] – see also Chap. 1 of this book [Bob11]). Schottky
uniformizations, together with the associated software, of more general real
Riemann surfaces are also discussed in [BK87,BBE+94].

Hidalgo [Hid01] and Hidalgo and Figueroa [Hid05] have presented a numer-
ical approach to Schottky uniformization of algebraic curves. Hidalgo [Hid01]
focusses on hyperelliptic M -curves (of, in principle, arbitrary genus) while
Hidalgo and Figueroa [Hid05] consider maximally symmetric real curves of
genus two. Having specified the a-cycles of the curve and certain correspond-
ing circles in the Schottky uniformization domain, they exploit the fact that
the holomorphic differentials on the universal cover as written down by Burn-
side [Bur92] are the lifting of the dual holomorphic 1-forms on the curve (with
respect to the chosen a-cycles). By equating the period matrix computed both
in the homology basis on the universal cover with the period matrix of the
curve (either computed directly using the known basis of holomorphic 1-forms
of the curve, or known from other considerations), a set of transcendental
equations between the real parameters characterizing the uniformizing Schot-
tky group and the branch points of the curve are derived. These can then be
solved numerically.

The approach expounded here uses the Schottky–Klein prime function
to construct an explicit conformal slit mapping from a fundamental region
associated with a classical Schottky group to the region exterior to the slits
(or branch cuts) of the curve (5.1). Semmler and Seppälä [SS95] and Seppälä
[Sep04] have also presented a numerical algorithm to construct uniformizations
of real hyperelliptic M -curves but they proceed in the opposite direction: their
algorithm produces the group data from the branch point data by means of
an iterative scheme, first proposed by Myrberg [Myr20], which “opens up”
the slots (or cuts) between branch points to produce circles in the relevant
uniformization domain.
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5.2 The Schottky–Klein Prime Function

Let Dζ be a multiply connected circular domain given as the unit ζ-disc with
M ≥ 1 smaller circular discs excised. Figure 5.1 shows an example with M = 2.
For the particular application to the uniformization of real hyperelliptic curves
(1) only Schottky circles with centres aligned along a common axis will be
needed. The generators associated with such Schottky circles then generate a
Schottky group of Fuchsian type.

The aim of this section is to define a special transcendental function,
known as the Schottky–Klein prime function, associated with the domain
Dζ (or, strictly speaking, its Schottky double). First define M Möbius maps
{φj |j = 1, ...,M} by insisting that ζ = φj(ζ) on the circle Cj . That is, if Cj
is defined by

|ζ − δj |2 = (ζ − δj)(ζ − δj) = q2
j (5.4)

then

ζ = δj +
q2
j

ζ − δj
(5.5)

so

φj(ζ) ≡ δj +
q2
j

ζ − δj
. (5.6)

Next, introduce the Möbius maps

θj(ζ) ≡ φj(ζ
−1) = δj +

q2
j ζ

1− δjζ
. (5.7)

C2
′

C1
′

θ1(ζ)

θ2(ζ)
C0

C1

C2
b1

b2

Fig. 5.1. Schematic illustrating the circles Cj and C′
j in a triply connected case

(M = 2). Each of the two circles {Cj |j = 1, 2} is an a-cycle. The two b-cycles are
also indicated
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Let C′
j be the circle obtained by reflection of the circle Cj in the unit circle

|ζ| = 1 (i.e. the circle obtained by the transformation ζ �→ 1/ζ). These circles
are depicted in Fig. 5.1. The unit circle is denoted by C0. Referring back to
the original curve (5.1), this (antiholomorphic) reflection of the region Dζ

to produce an identical copy, with the opposite conformal structure in |ζ| >
1, effectively models the antiholomorphic involution (5.2) and allows us to
uniformize the second sheet of the curve X .

It is easily verified that the image of the circle C′
j under the transformation

θj is the circle Cj . In this way, θj identifies circle C′
j with circle Cj . Since

the M circles {Cj|j = 1, ...,M} are non-overlapping, so are the M circles
{C′

j |j = 1, ...,M}. The (classical) Schottky group Θ is defined to be the infinite
free group of mappings generated by compositions of the M basic Möbius
maps {θj|j = 1, ...,M} and their inverses {θ−1

j |j = 1, ...,M} and including
the identity map.

Consider the (generally unbounded) region of the plane exterior to the
2M circles {Cj , C′

j |j = 1, ...,M}. Let this region be called F . F is known
as the fundamental region associated with the Schottky group generated by
the Möbius maps {θj |j = 1, ...,M} and their inverses. This is because the
entire plane is tessellated with copies of this fundamental region obtained by
mapping F by the elements of the Schottky group. This fundamental region
can be understood as having two “halves” – the half that is inside the unit
circle but exterior to the circles Cj is the domain Dζ, the other half is the
region outside the unit circle and exterior to the circles C′

j . This other half
(or copy of Dζ) is obtained by an (antiholomorphic) reflection of Dζ in the
unit circle C0.

These two halves of F , one just a reflection through the unit circle of the
other, can be viewed as a model of the two “sides” of a compact (symmetric)
Riemann surface associated with Dζ known as its Schottky double. The circles
{Cj |j = 1, ...,M} can be identified with the a-cycles of this compact Riemann
surface (by identification, the circles {C′

j |j = 1, ...,M} also correspond to
a-cycles); any line joining identified points on Cj and C′

j can be identified
with a b-cycle. There are clearly M such b-cycles. Figure 5.1 indicates these
in the case M = 2.

Any compact Riemann surface of genus M also possesses exactly M
holomorphic differentials [FK04] which we shall here denote {dvj(ζ)|j =
1, ...,M}. The functions {vj(ζ)|j = 1, ...,M} are the integrals of the first kind
and each is uniquely determined, up to an additive constant, by their periods
around the a and b-cycles. These functions are analytic, but not single-valued,
everywhere in F . Here we normalize the holomorphic differentials so that

∮

ak

dvj = δjk ,

∮

bk

dvj = τjk (5.8)

where τjk is the period matrix.
Armed with a normalized basis of a and b-cycles, the M integrals of the

first kind and the Schottky group Θ, we have now set up all the necessary
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machinery to be able to define the Schottky–Klein prime function. The fol-
lowing theorem is established in Hejhal [Hej72]:

Theorem 1. There is a unique function X̃(ζ, γ) defined by the properties:

(i) X̃(ζ, γ) is analytic everywhere in F .
(ii) For γ ∈ F , X̃(ζ, γ) has a second-order zero at each of the points
{θ(γ)|θ ∈ Θ}.

(iii) For γ ∈ F ,

lim
ζ→γ

X̃(ζ, γ)
(ζ − γ)2

= 1 . (5.9)

(iv) For j = 1, ...,M ,

X̃(θj(ζ), γ) = exp(−2πi(2(vj(ζ) − vj(γ)) + τjj))
dθj(ζ)
dζ

X̃(ζ, γ) . (5.10)

Hejhal [Hej72] then defines the Klein prime function ω(ζ, γ) (or what we
will call, following Baker [Bak97], the Schottky–Klein prime function) as the
square root of this function, i.e.,

ω(ζ, γ) = (X̃(ζ, γ))1/2 (5.11)

where the branch of the square root is chosen so that ω(ζ, γ) behaves like
(ζ − γ) as ζ → γ.

There is a classical infinite product for the Schottky–Klein prime function
[Bak97] described in the next section. It is known to converge for any Schottky
group of Fuchsian type so this infinite product representation can be used in
the uniformization problem of interest here. It is worth mentioning, however,
that there are other ways to compute the Schottky–Klein prime function: for
example, Crowdy and Marshall [CM07] have recently described a numerical
algorithm for the computation of the Schottky–Klein prime function on the
Schottky double of planar domains. The new method does not rely on a sum
(or product) over a Schottky group (note that those authors do not prove con-
vergence of the new method – further work is needed on this – but numerical
evidence of convergence is provided). It is important to seek alternatives to
infinite sum/product representations over Schottky groups because, from a
numerical standpoint, the convergence of such representations can be very
slow (especially as the genus of the curve gets large).

5.2.1 Infinite Product Formula

Following Baker [Bak97], an infinite product formula for the Schottky–Klein
prime function is given by

ω(ζ, γ) = (ζ − γ)ω′(ζ, γ) (5.12)
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where the function ω′(ζ, γ) is

ω′(ζ, γ) =
∏

θi∈Θ′′

(θi(ζ) − γ)(θi(γ)− ζ)
(θi(ζ) − ζ)(θi(γ)− γ)

. (5.13)

This product is over all mappings in a set Θ′′ which is used to denote the
Schottky group Θ excluding the identity map and all inverse maps. This means
that if a term associated with the mapping θi is included in the product, then
the term corresponding to θ−1

i must be omitted. The function ω(ζ, γ) is single-
valued on the whole ζ-plane, has a simple zero at γ and all points equivalent
to γ under the mappings of the group Θ. The prime notation is not used here
to denote differentiation.

Infinite product formulae for the period matrices are also available. When
k 	= j,

τjk =
1

2πi
log

⎡

⎣
∏

ψ∈ kΘj

(
ψ(Bj)− Bk
ψ(Bj)−Ak

)(
ψ(Aj)−Ak
ψ(Aj)− Bk

)⎤

⎦ (5.14)

where Ak,Bk are the two fixed points of the mapping θk and the product is
now taken over all elements in the set kΘj which denotes all elements of Θ
which, written as a composition of the M generating maps, do not have any
power of the generator θk on the left end or any power of θj on the right end.
We note that the following identities hold for each generator of the Schottky
group:

θj(ζ) − Bj
θj(ζ) −Aj

= μje
iκj

ζ − Bj
ζ −Aj

, j = 1, ...,M (5.15)

for some real parameters {μj, κj |j = 1, ...,M}. Given these parameters, we
can also write the diagonal terms of the period matrix for any k = 1, ...,M :

τkk =
1

2πi
log

⎡

⎣μkeiκk
∏

ψ∈ kΘ′′
k

[(
ψ(Bk)− Bk
ψ(Bk)−Ak

)(
ψ(Ak)−Ak
ψ(Ak)− Bk

)]2
⎤

⎦ . (5.16)

Finally, for the symmetric Schottky groups considered in this paper, it is
also possible to demonstrate that the Schottky–Klein prime function satisfies
the relation

ω(ζ−1, γ−1) = − 1
ζγ

ω(ζ, γ) . (5.17)

This identity is established, based on use of the infinite product formula (5.12)
and (5.13), in an appendix to Crowdy and Marshall [CM05] and the reader is
referred there for additional details.
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5.3 Slit Mappings

We now pick a circular region Dζ consisting of the unit disc with M smaller
circles excised all of which are centered on the real axis. Next, consider the
sequence of conformal mappings from Dζ in a complex ζ-plane to a complex
z-plane given by:

ζ1(ζ) = − ω(ζ, 1)
ω(ζ,−1)

, ζ2(ζ1) =
1− ζ1
1 + ζ1

, z(ζ2) =
1
2
(
ζ−1
2 + ζ2

)
. (5.18)

ω(ζ, .) is the Schottky–Klein prime function associated with Dζ . Figure 5.2
illustrates this composition of mappings in the case M = 3. By the end of the
composition the half of Dζ in the lower half-plane is mapped to an upper-half
plane exterior to a collection of slits along the real axis. The only non-trivial
component of this sequence is the initial mapping to the ζ1-plane. However,

ζ
1
(ζ)

ζ2(ζ1)

z(ζ2)

−1 1

Fig. 5.2. Composition of mappings (5.18) leading to a slit map (5.19) from the
interior of Dζ to the unbounded region in a z-plane exterior to M + 1 slits on the
real axis (the case M = 3 is shown)
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by making use of the two relations (5.10) and (5.17) satisfied by the prime
function, it is a straightforward exercise to show that ζ1(ζ) = ζ1(ζ) when ζ is
on a circle Cj for j = 1, ...,M . This means that all circles {Cj|j = 1, ...,M}
map to intervals on the real ζ1 axis, as indicated in the genus-3 case in Fig. 5.2.
It is also easy to make use of (5.17) to show that C0 maps to the imaginary
ζ1-axis.

The final composed map z(ζ) takes the simple functional form

z(ζ) =
ω2(ζ,−1) + ω2(ζ, 1)
ω2(ζ,−1)− ω2(ζ, 1)

. (5.19)

z(ζ) maps Dζ onto the region consisting of the entire complex plane exterior
to four slits on the real axis, where the image of the unit circle is the slit with
endpoints ±1.

To determine the real parameters {δj, qj |j = 1, ...,M} we make use of a
system of real equations arising from the fact that the branch points of the
curve {ej |j = 3, ..., 2g} are the images of the points where the inner circles
of Dζ intersect the real axis (and, now, we have set M = g). This system
of transcendental equations must be solved for the group parameters if the
branch points of the curve are given. The Schottky group associated with Dζ

provides a Schottky uniformization of the hyperelliptic curve X . On the other
hand, if the uniformizing Schottky group is given, then a direct evaluation of
the conformal map z(ζ) (using the given group data to construct the prime
function) at the relevant points immediately produces the branch point data
for the curve.

5.4 Numerical Examples

In this section, we find the uniformizing Schottky groups of some example
hyperelliptic curves. Since our construction is trivial in one direction (i.e.,
that of finding the algebraic curve given the group data), we concentrate on
constructing the group data given the branch points of a hyperelliptic curve.
This direction is only slightly more complicated because the solution of a
finite transcendental system of equations needs to be found. We encountered
no difficulty, however, in all the following examples, using a Newton iteration
scheme to generate the solution.

5.4.1 Comparison with a Myrberg Iteration Scheme

A check on the new method can be found by comparing it with an independent
method. In §6 of [SS95], Semmler and Seppälä consider examples of genus-2
hyperelliptic curves corresponding to (5.1) where

e1 = 8 , e2 = 6 , e3 = 1/k , e4 = −1/k , e5 = −6 , e6 = −8 (5.20)
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where 1 ≤ k ≤ 9 is an integer. Their circular domains are slightly different to
those we have considered: we obtain theirs from ours by simply inverting, via
the mapping ζ �→ ζ−1, in C0 and then re-scaling by a real constant. Owing to
the symmetry of the distribution of the points (5.20), such circular domains
are reflectionally symmetric in the imaginary axis. Label the points in the
right half plane where these circles intersect the real axis as p1, p2 and p3.
Semmler and Seppälä [SS95] have computed these points for 1 ≤ k ≤ 9. The
values are recorded in Table 2 of [SS95]. In Table 5.1, we present the values
of these points as computed using the alternative method described above.
For comparison, the values found by Semmler and Seppälä [SS95] are given
in brackets. Our computations have been made using truncations, to level 5,
of the infinite product defining the Schottky–Klein prime function. Excellent
agreement is obtained.

Table 5.1. A reproduction of Table 2 of [SS95] obtained using the new method.
The values obtained in [SS95] are included in brackets

k p1 p2 p3

1 0.50530 (0.50530) 6.4418 (6.4418) 7.4484 (7.4484)

2 0.25261 (0.25261) 6.4716 (6.4715) 7.4742 (7.4741)

3 0.16840 (0.16840) 6.4770 (6.4770) 7.4789 (7.4789)

4 0.12630 (0.12630) 6.4790 (6.4789) 7.4806 (7.4805)

5 0.10104 (0.10104) 6.4799 (6.4798) 7.4814 (7.4813)

6 0.084199 (0.084199) 6.4803 (6.4803) 7.4818 (7.4817)

7 0.072170 (0.072170) 6.4806 (6.4806) 7.4820 (7.4820)

8 0.063149 (0.063149) 6.4808 (6.4808) 7.4822 (7.4821)

9 0.056132 (0.056132) 6.4809 (6.4809) 7.4822 (7.4822)

5.4.2 A Genus-3 Example

Suppose we have the genus-3 curve

y2 =
8∏

n=1

(x − n) . (5.21)

Numerically we find the Schottky domain which, under (5.19), maps onto
the slit domain where three of the branch points have been normalized, by
a preliminary Möbius mapping, to be at ±1 and 20 (we pick these values
arbitrarily). For i = 1, 2, 3 we find the center and radius of the circle Ci in the
interior of the unit circle to be (reported here correct to 6 decimal places):

δ1 = 0.122809 , q1 = 0.017780 ,

δ2 = 0.054921 , q2 = 0.004353 ,

δ3 = 0.032974 , q3 = 0.001903 .

(5.22)
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5.4.3 A Genus-4 Example

Now consider instead the genus-4 curve

y2 =
10∏

n=1

(x − n) . (5.23)

Again, we numerically compute the Schottky domain which, under (5.19),
maps onto the slit domain transformed so that three of the branch points are
at ±1 and 20. For i = 1, ..., 4 we find the center and radius of the circle Ci in
the interior of the unit circle to be (reported here correct to 4 decimal places):

δ1 = 0.1317 , q1 = 0.0177 ,

δ2 = 0.0639 , q2 = 0.0044 ,

δ3 = 0.0419 , q3 = 0.0019 ,

δ4 = 0.0311 , q4 = 0.0010 .

(5.24)

5.5 Discussion

This paper has presented a simple numerical method for uniformizing a real
hyperelliptic M -curve. The method makes use of the simple conformal map

z(ζ) =
ω2(ζ,−1) + ω2(ζ, 1)
ω2(ζ,−1)− ω2(ζ, 1)

, (5.25)

where ω(ζ, .) is the Schottky–Klein prime function associated with the relevant
uniformizing groups.

While there are many others ways to treat the particular uniformization
problem considered here, consideration of the Schottky–Klein prime function
is a novel ingredient in the present method that we wish to emphasize. It is
an important mathematical object associated with any compact Riemann sur-
face, and it can facilitate the solution of other problems of conformal mapping
and uniformization. For example, in terms of it, it is possible to derive a rather
compact extension of the classical Schwarz–Christoffel formula to give confor-
mal mappings from multiply connected circular regions to arbitrary multiply
connected polygonal regions [Cro05,Cro07].
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6.1 Introduction

It is well known that a closed Riemann surface may be described by different
kind of objects; for instance, by algebraic curves, Fuchsian groups, Schottky
groups, Riemann period matrices, etc. In general, if one knows explicitly one
of these presentations, it is a very hard problem to provide the others in an
explicit way. In the 1920s, Myrberg [Myr16] proposed an algorithm which per-
mits to approximate numerically a Schottky uniformization of a hyperelliptic
Riemann surface once an explicit hyperelliptic curve presentation is given. The
convergence of such a method was discussed by Semmler and Seppälä [SS95]
in 1995 for the case that the hyperelliptic Riemann surface admits a maxi-
mal symmetry, that is, an anticonformal involution with the maximal number
(g + 1) (where g denotes the genus of the surface) of connected components
of fixed points. In [Sep04] the convergence was shown using a normal family
argument. This normal family argument applies also to the general case, and
will be used, in this paper, to show the convergence of the algorithm in the
general case.

The goal of the paper [Sep04] was to approximate a Fuchsian uniformiza-
tion of a Riemann surface given as an algebraic curve. The method presented
there applied to real hyperelliptic curves with real branch points. Yuri Lebedev
[Leb08] is presently working on computational problems regarding Riemann
surfaces. He has developed an OpenMath library with the particular aim
of providing the computational infrastructure making implementations of
Myrberg’s algorithm possible.
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6.1.1 Hyperelliptic Riemann Surfaces

A closed Riemann surface S of genus g ≥ 2 is called hyperelliptic if it admits
a conformal involution j : S → S with exactly 2(g + 1) fixed points, called
the hyperelliptic involution; equivalently, there is a two-fold branched covering
π : S → Ĉ. Let us consider the projection under π of the set of fixed points of j,
say B = {a1, ...., a2g+2} ⊂ Ĉ. The conformal class of S is uniquely determined
by B and it is defined by the algebraic curve

y2 = (x − a1) · · · (x − a2(g+1)) .

Any set A ⊂ Ĉ of cardinality 2(g + 1) is the branch locus for some two-
fold branched covering of some hyperelliptic Riemann surface, and A defines
the same conformal class of S if and only if it is the image under a Möbius
transformation of B.

As the hyperelliptic involution j is unique [FK92], the group of conformal
and anticonformal automorphisms of S induces a finite group of (extended)
Möbius transformations that coincides with the group of (extended) Möbius
transformations preserving the set B.

6.1.2 Kleinian Groups

A Kleinian group is a discrete subgroup of PSL(2,C), which we identify as the
group of conformal automorphisms of the Riemann sphere Ĉ. Every Kleinian
group G decomposes Ĉ into two disjoint sets; the limit set Λ = Λ(G), and its
complement, the regular set (or region of discontinuity) Ω = Ω(G).

If G is finitely generated and if there is an invariant component Δ ⊂ Ω(G),
then we say that the pair (Δ,G) is a function group. If, moreover, G acts freely
on Δ, then we say that (Δ,G) is a freely acting function group.

If (Δ,G) is a function group, then S = Δ/G is an analytically finite
Riemann orbifold [Ahl64, Ber67], that is a closed Riemann orbifold with a
finite number of so called conical points. The complement of these conical
points is an ordinary Riemann surface.

In the case that (Δ,G) is a freely acting function group, S has no conical
points, that is, it is an analytically finite Riemann surface. If P : Δ→ S is a
regular branched covering induced by the action of G, then we say that the
triple (Δ,G, P : Δ→ S) is an uniformization of S.

The existence of uniformizations is a consequence of uniformization theo-
rem. Classical examples of uniformizations are provided by Fuchsian groups of
the first kind G acting on the hyperbolic plane H

2; called Fuchsian uniformiza-
tions. Other examples are the Schottky uniformizations whose definition is
recalled below.



6 Numerical Schottky Uniformizations: Myrberg’s Opening Process 197

6.1.3 Schottky Groups

A Schottky group of rank g is a Kleinian group G generated by loxodromic
transformations, say A1, . . . , Ag, so that there are 2g disjoint simple loops,
C1, C

′
1, . . . , Cg, C

′
g, bounding a common domain D in the extended complex

plane Ĉ, where Ai(Ci) = C′
i, and Ai(D)∩D = ∅, i = 1, . . . , p. The transforma-

tions A1, ..., Ag are called a set of Schottky generators of G and the collection
of loops C1, C

′
1, ..., Cg, C

′
g is called a fundamental set of loops of G. In [Chu68]

V. Chuckrow has shown that every set of free generators of a Schottky group
is in fact a set of Schottky generators.

If G is a Schottky group of rank g, then Λ(G) is empty for g = 0, two points
for g = 1 and a Cantor set for g ≥ 2. The quotient Ω(G)/G turns out to be
a closed Riemann surface of genus g. The triple (G,Ω(G), P : Ω(G) → S)
is called a Schottky uniformization of S. The Retrosection Theorem [Ber75,
Kle83, Koe10] asserts that every closed Riemann surface of genus g may be
uniformized by a Schottky group of rank g.

6.1.4 Classical Schottky Groups

By a circle in the Riemann sphere Ĉ we mean either an Euclidean circle in
the complex plane or the union of the point at infinity with an Euclidean
line. If we may choose a fundamental set of loops for a Schottky group G
consisting of circles of Ĉ, then we say that G is a classical Schottky group and
that (G,Ω(G), P : Ω(G)→ S) is a classical Schottky uniformization of S.

The existence of non-classical Schottky groups is due to Marden [Mar74]
and an explicit example is due to Yamamoto [Yam91]. In [HM06] there is a
theoretical construction of non-classical Schottky groups in every genera.

Conjecture 1. Every closed Riemann surface may be uniformized by a classical
Schottky group.

Conjecture 1 has been proved for (a) Riemann surfaces admitting an
anticonformal involution with fixed points, see for instance [Bob87, Koe10,
Mas97, Sep04], and (b) Riemann surfaces with a collection of g homologi-
cally independent simple closed geodesics sufficiently short, as a consequence
of the Round Modulus Theorem due to C. McMullen in [McM94].

6.1.5 Whittaker Groups

A Whittaker group of rank g is a Kleinian group Ĝ generated by (g+1) elliptic
elements of order 2, say E1, ...., Eg+1, so that there is a collection of pairwise
disjoint simple closed curves, say C1, ...., Cg+1, so that all of them bound a
common domain D of connectivity (g + 1) and so that Ej permutes the two
topological discs bounded by Cj . The set of generators E1, ..., Eg+1 is called a
set of Whittaker generators and the collection of loops C1, ...., Cg+1 is called
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a fundamental set of loops. Both fixed points of Ej belong to Cj and D is a
fundamental domain for Ĝ. As consequence of the Klein–Maskit’s combination
theorems, every elliptic element of Ĝ is conjugate to some Ej in Ĝ. This, in
particular, permits to see that every set of free generators, by elements of
order 2, of a Whittaker group is a Whittaker set of generators. The quotient
R = Ω(Ĝ)/Ĝ is the Riemann sphere with exactly 2(g + 1) conical points of
order 2. Let us denote by Q : Ω(Ĝ)→ R the natural regular branched covering
map with Ĝ as covering group. The triple (Ω(Ĝ), Ĝ, Q : Ω(Ĝ)→ R) is called
a Whittaker uniformization of R. Let us denote by pj , qj ∈ Cj both fixed
points of Ej . Then, on R we have a collection of pairwise disjoint simple arcs
γj = Q(Cj) connecting the two points Q(pj) and Q(qj), for j = 1, .., g+1. We
say that the collection of arcs γ1, ..., γg+1 is a set of Whittaker fundamental
arcs for Ĝ.

Lemma 1. If we start with a Riemann orbifold R given by the Riemann
sphere with exactly 2(g + 1) conical points of order 2, say a1, b1, ..., ag+1 and
bg+1, and a set of pairwise disjoint simple arcs, say γ1, ..., γg+1, so that γj
connects aj with bj, then there is a Whittaker uniformization (Ω(Ĝ), Ĝ, Q :
Ω(Ĝ)→ R) so that the loops γ1, ..., γg+1 form a set of Whittaker fundamental
arcs for Ĝ.

Proof. This is consequence of quasiconformal deformation theory [Ber75] (this
was also observed by L. Keen in [Kee80]). %&

Lemma 2. Let us consider two Whittaker uniformizations, say (Ω(Ĝ1), Ĝ1,

Q1 : Ω(Ĝ1) → R) and (Ω(Ĝ2), Ĝ2, Q2 : Ω(Ĝ2) → R), both of them defining
the same set of Whittaker fundamental arcs on R. Then, there is a Möbius
transformation A so that Ĝ2 = AĜ1A

−1 and Q2 = Q1A
−1.

Proof. The hypothesis asserts that there is a fundamental set of loops
Cj

1 , ..., C
j
g+1, with respect to a fundamental set of generators Ej

1 , ..., E
j
g+1

for Ĝj , for j = 1, 2, so that Q1(C1
k) = Q2(C2

k), for k = 1, ..., g + 1. We may
construct a homeomorphism A : Ω(Ĝ1)→ Ω(Ĝ2) satisfying AE1

k = E2
kA, for

k = 1, ..., g+1, and Q2 = Q1A
−1. As Qj is locally conformal homeomorphism

(except at the fixed points of the elliptic transformations), we also have that
A is a conformal homeomorphism. As the region of discontinuity of a Schottky
group is of type OAD (that is, it admits no holomorphic function with finite
Dirichlet norm (see [AS60, p. 241])), then the region of discontinuity of Ĝ1 is
also of type OAD (as it is the region of discontinuity of the associated hyper-
elliptic Schottky group). It follows from this (see [AS60, p. 200]) that every
conformal map from Ω(Ĝ1) into the extended complex plane is fractionally
linear, in particular, A is a Möbius transformation. %&



6 Numerical Schottky Uniformizations: Myrberg’s Opening Process 199

6.1.6 Classical Whittaker Groups

If we may choose a set of fundamental loops consisting of circles for a
Whittaker group Ĝ, then we say that Ĝ is a classical Whittaker group and
that (Ĝ, Ω(Ĝ), P : Ω(Ĝ)→ S) is a classical Whittaker uniformization of S.

Conjecture 2. Every Riemann orbifold given by the Riemann sphere and an
even number of conical points of order two may be uniformized by a classical
Whittaker group.

6.1.7 Hyperelliptic Schottky Groups

If Ĝ = 〈E1, ..., Eg+1〉 is a Whittaker group of rank g, then the elements
A1 = Eg+1E1, A2 = Eg+1E2, ..., Ag = Eg+1Eg are Schottky generators of
a Schottky group G of rank g; the unique index two torsion free subgroup
of Ĝ. We say that G is a hyperelliptic Schottky group. If C1, ...., Cg+1 is a
fundamental set of loops for Ĝ associated to the Whittaker set of generators
E1, ..., Eg+1, then the collection C1, C′

1 = Eg+1(C1), ..., Cg, C′
g = Eg+1(Cg),

defines a standard fundamental set of loops of G with respect to the gen-
erators A1, ..., Ag. As G has index two in Ĝ, they have the same region of
discontinuity, say Ω. If g ≥ 2 and we set Ω/G = S and Ω/Ĝ = R, then S is
a hyperelliptic Riemann surface; each involution Ej induces the hyperelliptic
involution j and R = S/〈j〉. If we denote by P : Ω → Ĉ a branched covering
with Ĝ as cover group and denote by Q : Ω → S a covering with G as cover
group, then we have a two-fold branched covering π : S → Ĉ so that πQ = P .
In this way, the projection of the 2(g + 1) fixed points of the E0, ..., Eg, is
exactly the branch locus of π.

It was noted by L. Keen in [Kee80] that every Schottky group of rank 2
is a hyperelliptic one. In fact, if G is a Schottky group of rank 2, say freely
generated by A and B, then E3 = AB − BA, E1 = E3A and E2 = E3B
are elliptic elements of order two. Moreover, the elements E1, E2, E3 are a
Whittaker set of generators of a Whittaker group Ĝ whose index two torsion
free subgroup is G. Moreover, L. Keen observed the following.

Theorem 1. [Kee80] Every hyperelliptic Riemann surface may be uni-
formized by a hyperelliptic Schottky group.

Remark 1. If Conjecture 2 holds, then Conjecture 1 also holds at the level of
hyperelliptic Riemann surfaces using hyperelliptic Schottky groups.

6.1.8 Numerical Uniformization Problem

Let us consider a non-singular plane algebraic curve C defined by an affine
polynomial equation P (x, y) = 0. Then, by compactifying it and by a pro-
cess of desingularization, there is a closed Riemann surface SC defined by C.
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The numerical uniformization problem of C is to find an uniformization
(Δ,G, P : Δ→ SC) in an explicit way.

Explicit constructions for uniformizations have been difficult to find in
spite of huge efforts to solve this problem. Burnside [Bur93] provided the first
explicit uniformization in a special case. Buser and Silhol [BS01] (see also
[GSST98, Sil01]) have developed methods that allow one to find a Fuchsian
group uniformizing a given real hyperelliptic curve. They are able to compute
equations for certain surfaces having given geometric properties. Buser has
further studied differetial geometric methods to calculate lengths of closed
geodesics curves on a given hyperelliptic curve. Also, given a classical Schottky
group, methods due to Burnside [Bur92] permit to compute algebraic curves
and Riemann period matrices for the corresponding Riemann surface. These
methods have been applied in [BBE+94,Bob87,HF05]

The second author [Sep04] has used Myrberg’s algortithm to find Schottky
groups that uniformize a given (real) hyperelliptic Riemann surface. In this
paper we recall Myrberg’s process in the general situation in order to approxi-
mate numerically Schottky uniformizations of hyperelliptic Riemann surfaces
and prove the convergence of it.

6.2 Some Basic Facts

Lemma 3. Let us consider any two branched regular coverings π1, π2 :
Ĉ→ Ĉ, both with covering group G = 〈E〉, where E is a Möbius transforma-
tion of order two. Then, there is a Möbius transformation A so that π2 = Aπ1.

Proof. Let p, q be the fixed points of E. Set a = π1(p), b = π1(q), c = π2(p)
and d = π2(q). We may define A(a) = c and A(b) = d. If z /∈ {a, b}, then
π−1

1 (z) = {u, v} so that v = E(u). In this way, we may define A(z) = π2(u). It
is clear that A is well defined homeomorphism of the Riemann sphere so that
Aπ1 = π2. Since πj are locally conformal homeomorphisms in the complement
of {p, q}, A is a Möbius transformation. %&

6.2.1 Opening Arcs

By a simple arc we mean the image of a homeomorphic embedding
α : [0, 1]→ Ĉ.

Let L be a simple arc, say parametrized by the homeomorphic embedding
α : [0, 1] → Ĉ, that is, L = α([0, 1]). Set p = α(0) and q = α(1). Let us fix
three different points a, b, c ∈ Ĉ− L.

As a consequence of Lemma 1 there is a Whittaker uniformization
(Ĝ = 〈EL〉, Ĉ, QL : Ĉ→ R), where R is the orbifold provided by the Riemann
sphere and whose conical points are p and q (both of order two) and there
is a simple loop ΓL, containing both fixed points of the conformal involution



6 Numerical Schottky Uniformizations: Myrberg’s Opening Process 201

EL, bounding two discs which are permuted by EL, say DL and D∗
L, and

L = QL(ΓL). By composing QL at the right by a suitable Möbius transforma-
tion, we may also assume {a, b, c} ⊂ DL and QL(x) = x for x ∈ {a, b, c}. The
above Whittaker uniformization is uniquely determined by this normalization
for QL.

The conformal homeomorphism ΦL = Q−1
L : Ĉ − L → DL satisfies the

following properties:

(1) ΦL(a) = a, ΦL(b) = b and ΦL(c) = c

(2) Φ−1
L : DL → Ĉ− L extends continuously to a map

QL : DL = DL ∪ ΓL → Ĉ with QL(x) = QL(y) if and only if y = EL(x)
for every pair of points x, y ∈ ΓL, and Φ−1

L (ΓL) = L.

Lemma 4. The map ΦL is uniquely determined by the normalization (1).

Proof. Assume we have another conformal homeomorphism Ψ : Ĉ − L → D,
where D is a Jordan disc on the Riemann sphere (say bounded by the simple
loop Υ ) with {a, b, c} ⊂ D, so that Ψ(x) = x for x ∈ {a, b, c}, and that
there is an elliptic Möbius transformation F of order two that permutes both
discs bounded by Υ , such that Ψ−1(x) = Ψ−1(y) if and only if y = F (x)
for every pair of points x, y ∈ Υ . The map η = ΦLΨ

−1 : D → DL is a
conformal homeomorphism that fixes three different points and which can be
extended to a homeomorphism of the Riemann sphere satisfying the condition
ELηF = η. Clearly, η is the restriction of a Möbius transformation that fixes
three different points, so it is the identity. %&

As a consequence, DL and EL are also uniquely determined by the arc L
and the normalization (1). We call ΦL the opening map of L normalized at
the points a, b and c or just opening map of L if the choice of the points a, b
and c is clear.

6.2.2 Explicit Form of the Opening Map ΦL

Let us consider a Möbius transformation T so that T (p) = 0 and T (q) = ∞
(for instance T (z) = (z − p)/(z − q)). We have that T (L) is a simple arc
connecting 0 with ∞.

Let us consider π : Ĉ → Ĉ defined by π(z) = z2. By lifting the simple
arc T (L) under π, we obtain a simple loop L̂, through 0 and ∞, which is
invariant under the Möbius transformation E(z) = −z. Choose one of the two
discs bounded by L̂, say D, and consider the branch of

√
z : Ĉ → D. Using

this branch, we compute
√

T (a),
√

T (b),
√

T (c) ∈ D. Let L be the Möbius
transformation satisfying L(

√
T (a)) = a, L(

√
T (b)) = b and L(

√
T (c)) = c.

Since, by Lemma 4, ΦL is unique under the normalization of fixing a, b and
c, we have the following.
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Lemma 5.

ΦL(z) =
AF (z) + B

CF (z) + D
,

where

A = ab (F (a)− F (b)) + bc (F (b)− F (c)) + ac (F (c)− F (a)) ,

B = abF (c) (F (b)− F (a)) + bcF (a) (F (c)− F (b)) + acF (b) (F (a)− F (c)) ,

C = a (F (c)− F (b)) + b (F (a)− F (c)) + c (F (b)− F (a)) ,

D = aF (a) (F (b)− F (c)) + bF (b) (F (c)− F (a)) + cF (c) (F (a)− F (b))

F (z) =
√

z − p

z − q
.

6.3 Myrberg’s Opening Process

In this section we explain Myrberg’s algorithm [Myr20] and provide a proof
of its convergence (see Theorem 2).

6.3.1 Starting Point

Let us consider a collection of γ = g+1 (where g ≥ 2) pairwise disjoint simple
arcs, say L1, ...., Lγ . Set S = Ĉ − (L1 ∪ · · · ∪ Lγ) and choose three different
points on S, say a, b, c ∈ S.

Let R be the Riemann orbifold given by the Riemann sphere with conical
points at the 2γ end points of the above simple arcs Lj , each one with order 2.

As a consequence of Lemmas 1 and 2, there is a unique Whittaker uni-
formization

(Ĝ, Ω,Q : Ω → R) ,

for which L1, ..., Lγ is a Whittaker fundamental set of arcs, and Q is normal-
ized by the rule Q(a) = a,Q(b) = b and Q(c) = c.

In this way, there is a collection of pairwise disjoint simple loops, say
C1, ..., Cγ ⊂ Ω, all of them bounding a common domainD ⊂ Ω of connectivity
2γ (a fundamental domain for Ĝ), and there are elliptic Möbius transformation
of order two, say E1, ..., Eγ , so that Ej(Cj) = Cj , Ej(D)∩D = ∅, Q(Cj) = Lj,
for all j = 1, .., γ, and Ĝ = 〈E1, ..., Eγ〉.

Let us consider the inverse Ψ = Q−1 : S → D, which is a conformal home-
omorphism. Below, we construct a sequence of conformal homeomorphisms
ψn : S → Dn ⊂ Ĉ, where each ψn is the composition of certain opening maps,
whose limit is Ψ .
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6.3.2 Special Chain of Subgroups

We call E1, ..., Eγ the first generation elements of Ĝ. For each k ∈ {1, 2, ...}
and i1, ..., ik, ik+1 ∈ {1, 2, ..., γ} so that i1 	= i2 	= · · · 	= ik−1 	= ik 	= ik+1,
we call any of the elements of the form Ei1Ei2 · · ·Eik−1EikEik+1EikEik−1 · · ·
Ei2Ei1 an (k + 1)-generation element of Ĝ.

A sequence of subgroups Ĝn < Ĝ is called admissible if the following holds

(1) Ĝ0 = Ĝ

(2) Ĝj+1 � Ĝj of index two
(3) Ĝj+1 is obtained by elimination of an element of Ĝj of lowest generation

Example 1. Let γ = 3 and Ĝ = 〈E1, E2, E3〉. The first four terms for an
admissible sequence are the following ones.

Ĝ0 = 〈E1, E2, E3〉 ,

Ĝ1 = 〈E2, E3, E1E2E1, E1E3E1〉 ,

Ĝ2 = 〈E3, E1E2E1, E1E3E1, E2E3E2, E2E1E2E1E2, E2E1E3E1E2〉 ,

Ĝ3 =〈E1E2E1, E1E3E1, E2E3E2, E2E1E2E1E2, E2E1E3E1E2, E3E1E2E1E3,

E3E1E3E1E3, E3E2E3E2E3, E3E2E1E2E1E2E3, E3E2E1E3E1E2E3〉 .

Let us consider an admissible sequence of subgroups Ĝn < Ĝ. By con-
struction, Ĝn has index 2n in Ĝ, in particular, each Ĝn has the same region of
discontinuity Ω. It follows the existence of a regular branched covering map

ηn : Ω → Rn ,

where Rn is the Riemann sphere with a finite collection of conical points of
order two, whose covering group is Ĝn with ηn(a) = a, ηn(b) = b, ηn(c) = c

and a (not necessarily regular) covering Qn : Ĉ → R so that Q = Qnηn
(see Fig. 6.1). In particular, Qn(a) = a, Qn(b) = b and Qn(c) = c.

Set Dn = ηn(D). It follows from the construction that Qn : Dn → S is a
conformal homeomorphism. We denote by ψn : S → Dn the inverse.

The following is a simple consequence of the above construction and the
fact that

⋂∞
j=1 Ĝn = {I}, where (Gn) is any admissible sequence in the

Whittaker group Ĝ.

6.3.3 Convergence

Theorem 2. The sequence ηn converges locally uniformly to the identity map
and the sequence ψn converges locally uniformly to Ψ : S → D.
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Proof. Normality of the family. Let us consider the collection of points R ⊂ Ω
obtained by the union of the G-orbits of the points a, b and c. Set ΩR = Ω−R
and let us consider the collection of holomorphic maps ηj restricted to ΩR.
The images of ΩR under each ηj misses the three points a, b and c. By Montel’s
theorem ηj : ΩR → C is a normal family. Unfortunately, this is not enough to
ensure ηj : Ω → C to be a normal family.

Let us consider any fundamental domain D for G so that in its interior
D0 are contained points aD ∈ D0 in the G-orbit of a, bD ∈ D0 in the G-orbit
of b and cD ∈ D0 in the G-orbit of c. Consider the family of restrictions
ηj : D0 → Ĉ. Clearly, ηj(aD) = 0, ηj(bD) = 1 and ηj(cD) = ∞. It follows
from Theorem 2.1 in [Leh86] that ηj : D0 → Ĉ is a normal family.

If D1, ..., Dn are fundamental domains for G, so that the interior D0
k of Dk

always contains a point in the G-orbit of a, b and c, then the previous ensures
that ηj : D0

k → Ĉ is a normal family. It follows that ηj : ∪nk=1D
0
k → Ĉ is a

normal family.
As Ω is a countable union of interiors of fundamental domains as above,

we may construct a family of open domains R1 ⊂ R2 ⊂ · · · ⊂ Ω so that
∪∞k=1Rk = Ω and ηj : Rk → Ĉ is a normal family, for each k.

For any subsequence of ηj : Ω → Ĉ, we can find a subsequence of
ηj : R1 → Ĉ that converges locally uniformly. Now, there is such a subse-
quence whose restriction to R2 converges locally uniformly. We then consider
such a new subsequence and restrict it to R3 and continue inductively such
a process. We use the diagonal method to obtain a subsequence converging
locally uniformly on all Ω.
Limit mappings of subsequences. Let us choose any subsequence ηjk : Ω → Ĉ

that converges locally uniformly to the conformal map η∞ : Ω → Ĉ.
As ηj(a) = a, ηj(b) = b and ηj(c) = c, it follows that η∞(a) = a, η∞(b) = b

and η∞(c) = c, in particular, η∞ is a non-constant conformal mapping.
As Gj+1 �Gj and ∩∞j=0Gj = {I}, we may construct fundamental domains

Dj for Gj so that Dj ⊂ Dj+1 and ∪∞j=1Dj = Ω. Let us denote by D0
j the

interior of Dj .
Clearly, for each j ≥ k, ηj restricted to D0

k is an injective conformal
mapping.

The convergent subsequence of injective conformal mappings ηjk : D0
k → Ĉ

converges uniformly to η∞ : D0
k → Ĉ, which is either constant or injective. As

we know the last to be non-constant, we obtain that η∞ : Ω → Ĉ is a locally
injective conformal map, that is, a local homeomorphism onto its image.

Let γ ∈ G. As ∩∞j=0Gj = {I}, there is some j0 so that γ /∈ Gj , for j ≥ j0.
It follows that η∞ is globally injective on all Ω.

As Ω is also the region of discontinuity of a Schottky group, which is a
domain of class OAD (that is, it admits no holomorphic function with finite
Dirichlet norm (see [AS60, p. 241]). It follows from this (see [AS60, p. 200])
that any one-to-one conformal map on Ω is necessarily the restriction of a
Möbius transformation. In particular, η∞ is the restriction of a Möbius trans-
formation. As it fixes three different points, η∞ = I (identity map).
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Convergence of all the family. Since any subsequence of (ηj) has a convergent
subsequence, the above asserts that the complete sequence converges locally
uniformly to the identity map. Now, as Q = Qjηj , it follows that (ψj) con-
verges locally uniformly to Ψ .

6.3.4 Slots Generation

Myrberg’s opening process permits to see that each ψn can be seen as a
composition of opening mappings of arcs. We use the points a, b, c to normalize
each opening map, that is, each opening map is assumed to fix these three
points. As in [Sep04], we call the arcs L1, ..., Lγ the first generation slots.

We consider the opening map ΦL1 : Ĉ − L1 → DL1 = Ĉ − D∗
L1

and the
Möbius transformation EL1 of order two. We have that EL1 has both fixed
points on the boundary loop CL1 = ∂DL1 and permutes DL1 with D∗

L1
.

The arcs ΦL1(L2), ...., ΦL1(Lγ) are first generation slots, and
EL1(ΦL1(L2)), ..., EL1(ΦL1(Lγ)) are called second generation slots.

We now choose any of the new first generation slots to proceed as done
with L1. For instance, if we choose the arc L = ΦL1(L2), then we consider the
opening map φL defined on the complement of L onto a disc DL = Ĉ −D∗

L.
We have again a Möbius transformation of order two, say EL, with both fixed
points on the boundary loop ∂DL and permutes DL with D∗

L. The arcs

ΦL(ΦL1(L3)), . . . , ΦL(ΦL1(Lγ))

are still first generation slots.
The arcs

ΦL(EL1(ΦL1(L2))), . . . , ΦL(EL1(ΦL1(Lγ)))

and

EL(ΦL(ΦL1(L3))), . . . , EL(ΦL(ΦL1(Lγ)))

are second generation slots) and

EL(ΦL(EL1(ΦL1(L2)))), . . . , EL(ΦL(EL1(ΦL1(Lγ))))

are called third generation slots).
We continue the process until all first generations slots have been opened

and new higher generation slots have been formed. In this way, when opening
slots, one forms iteratively new slots which are divided into generations. Order
these slots by generation and within a generation. Continue with opening the
slots in the order we have chosen above. Iterating this procedure we get a
sequence of conformal mappings Φ1, Φ2, . . . . These mappings are simply the
various opening mappings.
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6.3.5 Final Steps

The chosen order for the opening slot process produces in a natural way an
admissible sequence Ĝn so that

ψn = ΦnΦn−1 · · ·Φ2Φ1 : S → Ĉ .

The region Ψn(S) is a domain bounded by (g + 1) pairwise disjoint simple
loops, say C1,n, ..., Cγ,n, contained in some region Ωn ⊂ Ĉ. We also have
conformal homeomorphisms of Ωn, each one of order two (not necessarily
Möbius transformations), say E∗

1,n, ..., E
∗
γ,n, so that E∗

j,n keeps invariant the
loop Cj,n, permutes the two components Ωn−Cj,n and has exactly two fixed
points on Cj,n. As a consequence of Theorem 2, the homeomorphism E∗

j,n

converges to the Möbius transformation Ej ∈ Ĝ.
Let us consider the unique Möbius transformations of order two

E1,n, ..., Eγ,n so that Ej,n has as fixed points the two fixed points of E∗
j,n. Set

Gn = 〈E1,n, ..., Eγ,n〉

The above asserts that the sequence of groups (Gn) converges to the Whit-
taker group Ĝ.

Remark 2. Above we have described Myrberg’s algorithm and also proved its
convergence. This algorithm permits to approximate numerically a Schottky
uniformization of a hyperelliptic Riemann surfaces

y2 = (x− a1) · · · (x − a2g+2) ,

where a1, ..., a2g+2 ∈ C are different points. In the case that each aj ∈ R,
already considered in [Sep04], the limit Schottky group is a classical one. In
the general case, the limit Schottky group may not be a classical one.

6.4 Genus Two Riemann Surfaces

Every closed Riemann surface of genus two S can be described by a plane
algebraic curve

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3) (6.1)

where λj ∈ C− {0, 1} and λj 	= λk for j 	= k.
Starting from an algebraic curve of type (6.1), Myrberg’s opening pro-

cess permits to obtain a numerical algorithm to construct Schottky groups
uniformizing “very close” surfaces, that is, algebraic curves of the form

y2 = x(x − 1)(x− λ1,n)(x − λ2,n)(x − λ3,n)

with limn→∞ λj,n = λj (see for instance [Sep04] for the case when all λj ∈ R).
Yuri Lebedev [Leb08] and John George are currently working on imple-

mentations of this algorithm.
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Fig. 6.1. Ĝn for n = 0, 1, 2

Remark 3. Given a Fuchsian uniformization of a genus two Riemann surface,
a numerical method to obtain the algebraic curve has been done in [BS01,
GSST98, Sil01]. Similarly, in [Bob87,BBE+94,HF05, Sep94] algebraic curves
in terms of classical Schottky groups are obtained.
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[Kle83] Klein, F.: Neue Beiträge zur Riemann’schen Funktionentheorie. Math.
Ann. 21, 141–218 (1883)
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7.1 Introduction

Finding a conformal parameterization for a surface and computing its period
matrix is a classical problem which is useful in a lot of contexts, from statistical
mechanics to computer graphics.

The 2D-Ising model [Mer01,CSM02,CSM03] for example can be realized on
a cellular decomposition of a surface whose edges are decorated by interaction
constants, understood as a discrete conformal structure. In certain configu-
rations, called critical temperature, the model exhibits conformal invariance
properties in the thermodynamical limit and certain statistical expectations
become discrete holomorphic at the finite level. The computation of the pe-
riod matrix of higher genus surfaces built from the rectangular and triangular
lattices from discrete Riemann theory has been addressed in the cited papers
by Costa-Santos and McCoy.

Global conformal parameterization of a surface is important in computer
graphics [JWYG04,DMA02,BCGB08,TACSD06,KSS06,War06,SSP08] in is-
sues such as texture mapping of a flat picture onto a curved surface in R

3.
When the texture is recognized by the user as a natural texture known as
featuring round grains, these features should be preserved when mapped onto
the surface, mainly because any shear of circles into ellipses is going to be
wrongly interpreted as suggesting depth increase. Characterizing a surface by
a few numbers is as well a desired feature in computer graphics, for prob-
lems like pattern recognition. Computing numerically the period matrix of a
surface has been addressed in [JWYG04].

This chapter uses the general framework of the theory of discrete Rie-
mann surfaces [Fer44, Duf68, Mer01, BMS05] and the computation of period
matrices within this framework (based on theorems and not only numeri-
cal analogies). Other approaches have emerged recently [GN07,DN03,Kis08].
We focus here on the computation of period matrices within this framework
(based on theorems and not only numerical analogies).

A.I. Bobenko and C. Klein (eds.), Computational Approach to Riemann Surfaces, 213
Lecture Notes in Mathematics 2013, DOI 10.1007/978-3-642-17413-1 7,
c© Springer-Verlag Berlin Heidelberg 2011
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We start with some surfaces with known period matrices and compute
numerically their discrete period matrices, at different levels of refinement.
In particular, some genus two surfaces made up of squares and the Wente
torus are considered. We observe numerically good convergence properties.
Moreover, we compute the yet unknown period matrix of the Lawson sur-
face, identify it numerically as one of the tested surfaces, which allows us to
conjecture their conformal equivalence, and finally to prove it.

7.2 Discrete Conformal Structure

Consider a polyhedral surface in R
3. It has a unique Delaunay tessellation,

generically a triangulation [BS07]. That is to say each face is associated with a
circumcircle drawn on the surface and this disk contains no other vertices than
the ones on its boundary. Let’s call Γ the graph of this cellular decomposition,
Γ0 its vertices, Γ1 its edges and complete it into a cellular decomposition with
Γ2 the set of triangles. Each edge (x, x′) = e ∈ Γ1 is adjacent to a pair of
triangles, associated with two circumcenters y, y′. The ratio of the (intrinsic)
distances between the circumcenters and the length of the (orthogonal) edge
e is called ρ(e). It is the celebrated cotan formula [PP93].

y

y
x

x

ρ =
y − y

x − x

Fig. 7.1. The ratio of the intrinsic lengths of the diagonals is the cotan weight

Following [Mer01], we call these data of a graph Γ , whose edges are
equipped with a positive real number, a discrete conformal structure. A dis-
crete Riemann surface is a conformal equivalence class of surfaces with the
same discrete conformal structure. It leads to a theory of discrete Riemann
surfaces and discrete analytic functions, developed in [Fer44, Duf68, Mer01,
Mer04,Mer07,BMS05,DKT08], that shares a lot of features with the continu-
ous theory, and these features are recovered in a proper refinement limit. We
are going to summarize these results (Fig. 7.1).

In our examples, the extrinsic triangulations are Delaunay. That is to say
the triangulations come from the embedding in R

3 and the edges (x, x′) ∈ Γ1

of the triangulation are the edges of the polyhedral surface in R
3. On the

other hand, the geodesic connecting the circumcenters y and y′ on the surface
is not an interval of a straight line and its length is generically greater than
the distance ||y−y′|| in R

3. The latter gives a more naive definition of ρ and is
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easier to compute. We will call it extrinsic, because in contrast to the intrinsic
ρ, it depends on the embedding of the surface in R

3 and is not preserved
by isometries. For surfaces which are refined and flat enough, the difference
between extrinsic and intrinsic distances is not large. We compare numerically
the two ways to compute ρ. The conclusion is that, in the examples we tested,
the intrinsic distance is marginally better, see Sect. 7.4.2.

The circumcenters and their adjacencies define a 3-valent abstract (locally
planar) graph, dual to the graph of the surface, that we call Γ ∗, with vertices
Γ ∗

0 = Γ2, edges Γ ∗
1 ' Γ1. We equip the edge (y, y′) = e∗ ∈ Γ ∗

1 , dual to the
primal edge e ∈ Γ1, with the positive real constant ρ(e∗) = 1/ρ(e). We define
Λ := Γ ⊕ Γ ∗ the double graph, with vertices Λ0 = Γ0 & Γ ∗

0 and edges Λ1 =
Γ1&Γ ∗

1 . Each pair of dual edges e, e∗ ∈ Λ1, e = (x, x′) ∈ Γ1, e∗ = (y, y′) ∈ Γ ∗
1 ,

is seen as the diagonals of a quadrilateral (x, y, x′, y′), composing a quad-graph
♦, with vertices ♦0 = Λ0, edges ♦1 composed of couples (x, y) and faces ♦2

composed of quadrilaterals (x, y, x′, y′).
The Hodge star, which in the continuous theory is defined by ∗(f dx +

g dy) = −g dx + f dy, is in the discrete case the duality transformation mul-
tiplied by the conformal structure:

∫

e∗
∗α := ρ(e)

∫

e

α (7.1)

A 1-form α ∈ C1(Λ) is of type (1, 0) if and only if, for each quadrilateral
(x, y, x′, y′) ∈ ♦2,

∫
(y,y′) α = i ρ(x, x′)

∫
(x,x′) α, that is to say if ∗α = −iα.

Similarly forms of type (0, 1) are defined by ∗α = +iα. A form is holomorphic,
respectively anti-holomorphic, if it is closed and of type (1, 0), respectively of
type (0, 1). A function f : Λ0 → C is holomorphic iff dΛf is.

We define a wedge product for 1-forms living either on edges ♦1 or on their
diagonals Λ1, as a 2-form living on faces ♦2. The formula for the latter is:

∫∫

(x,y,x′,y′)

α ∧ β :=
1
2

⎛

⎜⎝
∫

(x,x′)

α

∫

(y,y′)

β −
∫

(y,y′)

α

∫

(x,x′)

β

⎞

⎟⎠ (7.2)

The exterior derivative d is a derivation for the wedge product, for functions
f, g and a 1-form α:

d(fg) = f dg + g df , d(fα) = df ∧ α + f dα .

Together with the Hodge star, they give rise, in the compact case, to the usual
scalar product on 1-forms:

(α, β) :=
∫∫

♦2

α ∧ ∗β̄ = (∗α, ∗β) = (β, α) =
1
2

∑

e∈Λ1

ρ(e)
∫

e

α

∫

e

β̄ (7.3)

The adjoint d∗ = −∗ d ∗ of the coboundary d allows to define the discrete
Laplacian Δ = d∗ d+d d∗, whose kernel are the harmonic forms and functions.
It reads, for a function at a vertex x ∈ Λ0 with neighbours x′ ∼ x:
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(Δf) (x) =
∑

x′∼x
ρ(x, x′) (f(x)− f(x′)) .

Hodge theorem: The two ±i-eigenspaces decompose the space of 1-forms,
especially the space of harmonic forms, into an orthogonal direct sum. Types
are interchanged by conjugation: α ∈ C(1,0)(Λ)⇔ α ∈ C(0,1)(Λ) therefore

(α, β) = (π(1,0)α, π(1,0)β) + (π(0,1)α, π(0,1)β)

where the projections on (1, 0) and (0, 1) spaces are

π(1,0) =
1
2
(Id + i∗) , π(0,1) =

1
2
(Id− i∗) .

The harmonic forms of type (1, 0) are the holomorphic forms, the harmonic
forms of type (0, 1) are the anti-holomorphic forms.

The L2 norm of the 1-form df , called the Dirichlet energy of the function
f , is the average of the usual Dirichlet energies on each independent graph

ED(f) := ‖df‖2 = (df, df) =
1
2

∑

(x,x′)∈Λ1

ρ(x, x′) |f(x′)− f(x)|2 (7.4)

=
ED(f |Γ ) + ED(f |Γ∗)

2
.

The conformal energy of a map measures its conformality defect, relating
these two harmonic functions. A conformal map fulfills the Cauchy–Riemann
equation

∗ df = −i df . (7.5)

Therefore a quadratic energy whose null functions are the holomorphic ones is

EC(f) :=
1
2
‖df − i ∗ df‖2 . (7.6)

It is related to the Dirichlet energy through the same formula as in the con-
tinuous case:

EC(f) =
1
2

(df − i ∗ df, df − i ∗ df)

=
1
2
‖df‖2 +

1
2
‖−i ∗ df‖2 + Re(df, −i ∗ df)

= ‖df‖2 + Im
∫∫

♦2

df ∧ df

= ED(f)− 2A(f) , (7.7)

where the area of the image of the map f in the complex plane has the same
formulae (the second one meaningful on a simply connected domain)

A(f) =
i
2

∫∫

♦2

df ∧ df =
i
4

∮

∂♦2

f df − f df (7.8)
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as in the continuous case. For a face (x, y, x′, y′) ∈ ♦2, the algebraic area of
the oriented quadrilateral

(
f(x), f(x′), f(y), f(y′)

)
is given by

∫∫

(x,y,x′,y′)

df ∧ df = i Im
(
(f(x′)− f(x))(f(y′)− f(y))

)

= −2iA
(
f(x), f(x′), f(y), f(y′)

)
.

When a holomorphic reference map z : Λ0 → C is chosen, a holo-
morphic (resp. anti-holomorphic) 1-form df is, locally on each pair of dual
diagonals, proportional to dz, resp. dz̄, so that the decomposition of the exte-
rior derivative into holomorphic and anti-holomorphic parts yields df ∧ df =(
|∂f |2 + |∂̄f |2

)
dz ∧ dz̄ where the derivatives naturally live on faces and are

not to be mixed up with the boundary operator ∂.

7.3 Algorithm

The theory described above is straightforward to implement. The most sen-
sitive part is based on a minimizer procedure which finds the minimum of
the Dirichlet energy for a discrete Riemann surface, given some boundary
conditions. Here is the crude algorithm that we are going to detail.

The intersection number γ ◦ γ′ between two loops γ and γ′ on a surface
counts their algebraic number of crossings. It is a homotopy invariant and has
a clear discrete counterpart.

A canonical dissection ℵ is a normalized homotopy basis of a quad-graph
♦(S), that is to say, a set (ℵk)1≤k≤2g of loops ℵk ∈ ker∂ such that the
intersection numbers verify, for 1 ≤ k, � ≤ g,

ℵk ◦ ℵ� = 0, ℵk+g ◦ ℵ�+g = 0, ℵk ◦ ℵ�+g = δk,� . (7.9)

The situation is again doubled and a loop ℵk is pushed on the graph Γ to the
cycle ℵΓk and on its dual Γ ∗ to ℵΓ∗

k . See [Mer07] for more details.
Basis of holomorphic forms and the period matrix (of a discrete Riemann

surface S)

• Find a normalized (7.9) homotopy basis ℵ of ♦(S) and compute ℵΓk and
ℵΓ∗
k

• Compute the real discrete harmonic forms ωk on Γ such that
∮
γ ωk = γ◦ℵΓk

• Compute the dual discrete forms ∗ωk on Γ ∗, check ∗ωk is discrete harmonic
on Γ ∗

• Compute its periods (
∮
ℵΓ∗
	
∗ωk)k,� on Γ ∗

• Do likewise for the analogous discrete harmonic forms ω∗
k on Γ ∗

• Find the basis of holomorphic forms (ζk) normalized by
∮

ℵΓ	
ζk = δk,�,

∮

ℵΓ∗
	

ζk = 0, 1 ≤ k, � ≤ g.
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This can be done by some linear algebra (ζ) = R(Id + i ∗)(ω) (R is a
rectangular complex matrix)

• Define the period matrix of Γ , Πk,� :=
∮
ℵΓ∗
g+	

ζk +
∮
ℵΓg+	 ζk for 1 ≤ �, k ≤ g

• Do likewise for ζ∗k normalized by
∮

ℵΓ∗
	

ζ∗k = δk,�,

∮

ℵΓ	
ζ∗k = 0, 1 ≤ k, � ≤ g

• Define the period matrix of Γ ∗, Π∗
k,� :=

∮
ℵΓg+	 ζ

∗
k +

∮
ℵΓ∗
g+	

ζ∗k
• Define the period matrix as the half-sum

1
2
(Π + Π∗).

Finding a normalized homotopy basis of a connected cellular decomposi-
tion is performed by several well known algorithms. The way we did it is to
select a root vertex and grow from there a spanning tree, by computing the
vertices at combinatorial distance d from the root and linking each one of
them to a unique vertex at distance d − 1, already in the tree. Repeat until
no vertices are left.

Then we inflate this tree into a polygonal fundamental domain by adding
faces one by one to the domain, keeping it simply connected: We recursively
add all the faces which have only one edge not in the domain. We stop when
all the remaining faces have at least two edges not in the domain (see Fig. 7.2).

Fig. 7.2. A maximal spanning tree and its first inflation step

Then we pick one edge (one of the closest to the root) as defining the first
element of our homotopy basis: adding this edge to the fundamental domain
yields a non simply connected cellular decomposition and the spanning tree
gives us a rooted cycle of this homotopy type going down the tree to the root.
It is (one of) the combinatorially shortest in its (rooted) homology class. We
add faces recursively in a similar way until we can no go further. Then we
choose a new homotopy basis element, and so on until every face is closed
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(see Fig. 7.3). At the end we have a homotopy basis. We compute later on the
intersection numbers in order to normalize the basis.

Fig. 7.3. A homotopy class is associated with an edge linking two sides of the
polygon. Here a genus 4 example

We compute the unique real harmonic form η associated with each cycle
ℵ such that

∮
γ
η = γ ◦ ℵ. This is done by a minimizing procedure which finds

the unique harmonic function f on the graph Γ , split along ℵ, whose vertices
are duplicated, which is zero at the root and increases by one when going
across ℵ. This is done by linking the values at the duplicated vertices, in
effect yielding a harmonic function on the universal cover of Γ . The harmonic
1-form d f does not depend on the chosen root nor on the representative ℵ in
its homology class.

7.4 Numerics

We begun with testing discrete surfaces of known moduli in order to inves-
tigate the quality of the numerics and the robustness of the method. We
purposely chose to stick with raw double 15-digits numbers and a linear alge-
bra library which is fast but not particularly accurate. In order to be able to
compare period matrices, we used a Siegel reduction algorithm [DHB+04] to
map them by a modular transformation to the same canonical form.

7.4.1 Surfaces Tiled by Squares

Robert Silhol supplied us with sets of surfaces tiled by squares for which the
period matrices are known [Sil06, Sil01,BS01,RGA97]. There are translation
and half-translation surfaces: In these surfaces, each horizontal side is glued
to a horizontal side, a vertical to a vertical, and the identification between
edges of the fundamental polygon are translations for translation surfaces
and translations followed by a half-twist for half-translations. The discrete
conformal structure for these surfaces is very simple: the combinatorics is
given by the gluing conditions and the conformal parameter ρ ≡ 1 is constant.
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The genus one examples are not interesting because this 1-form is then
the unique holomorphic form and there is nothing to compute (the algorithm
does give back this known result). Genus 2 examples are non trivial because
a second holomorphic form has to be computed.

The translation surfaces are particularly adapted because the discrete
1-form read off the picture is already a discrete holomorphic form. There-
fore the computations are accurate even for a small number of squares. Finer
squares only blur the result with numerical noise. For half-translation surfaces
this is not the case, a continuous limit has to be taken in order to get a better
approximation.

Surface & Period matrix Numerical analysis

Ω1 = i
3

(
5 −4
−4 5

)

#vertices ‖ΩD −Ω1‖∞
25 1.13 · 10

−8

106 3.38 · 10
−8

430 4.75 · 10
−8

1726 1.42 · 10
−7

6928 1.35 · 10
−6

Ω2 = 1
3

(
−2 +

√
8i 1−

√
2i

1−
√

2i −2 +
√

8i

)

#vertices ‖ΩD −Ω2‖∞
14 3.40 · 10

−2

62 9.51 · 10
−3

254 2.44 · 10
−3

1022 6.12 · 10
−4

4096 1.53 · 10
−4

Ω3 = i√
3

(
2 −1
−1 2

)

#vertices ‖ΩD −Ω3‖∞
22 3.40 · 10

−3

94 9.51 · 10
−3

382 2.44 · 10
−4

1534 6.12 · 10
−5

6142 1.53 · 10
−6

Using 15 digits numbers, the theoretical numerical accuracy is limited to 8
digits because our energy is quadratic therefore half of the digits are lost. Using
an arbitrary precision toolbox or Cholesky decomposition in order to solve the
linear system would allow for better results but this is not the point here.

7.4.2 Wente Torus

For a first test of the numerics on a an immersed surface in R3 our choice
is the famous CMC-torus discovered by Wente [Wen86] for which an explicit
immersion formula exists in terms of theta functions [Abr87,Wal89,Bob91].
The modulus of the rhombic Wente torus is known [Hei96] to be equal to:

τw ≈ 0.41300 . . .+ 0.91073 . . . i ≈ exp(i1.145045 . . . .) .
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Grid : 10× 10 Grid : 20× 20

Grid : 40× 40 Grid : 80× 80

Fig. 7.4. Regular Delaunay triangulations of the Wente torus

We compute several regular discretizations of the Wente torus (Fig. 7.4)
and generate discrete conformal structures using ρex that are imposed by the
extrinsic Euclidean metric of R3 as well as ρin which are given by the intrinsic
flat metric of the surface. For a sequence of finer discretizations of a smooth
immersion, the two sets of numbers come closer and closer. For these discrete
conformal structures we compute again the moduli which we denote by τex
and τim and compare them with τw from above:

Grid ‖τin − τw‖ ‖τex − τw‖
10× 10 5.69 · 10−3 5.00 · 10−3

20× 20 2.00 · 10−3 5.93 · 10−3

40× 40 5.11 · 10−4 1.85 · 10−3

80× 80 2.41 · 10−4 6.00 · 10−4
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For the lowest resolution the accuracy of τex is slightly better then the one
of τin. For all other the discrete conformal structures with the intrinsically
generated ρin yields significant higher accuracy.

7.4.3 Lawson Surface

1162 vertices 2498 vertices

Fig. 7.5. Delaunay triangulations of the Lawson surface

Finally we apply our method to compute the period matrix of Lawson’s
genus 2 minimal surface in S

3 [Law70]. Konrad Polthier [GBP96] supplied us
with several resolutions of the surface which are generated by a coarsening and
mesh beautifying process of a very fine approximation of the Lawson surface
(Fig. 7.5). Our numerical analysis gives evidence that the period matrix of the
Lawson surface is

Ωl =
i√
3

(
2 −1
−1 2

)

which equals the period matrix Ω3 of the third example from Sect. 7.4.1.
Once conjectured that these two surfaces are conformally equivalent, it is a
matter of checking that the symmetry group of the Lawson genus two surface
yields indeed this period matrix, which was done, without prior connection,
in [BBM85]. An explicit conformal mapping of the surfaces can be found
manually: The genus 2 Lawson surface exhibits by construction four points
with an order six symmetry and six points of order four, which decomposes the
surface into 24 conformally equivalent triangles, of angles π

6 , π2 , π2 . Therefore
an algebraic equation for the Lawson surface is y2 = x6 − 1, with six branch
points at the roots of unity. The correspondence between the points in the
square picture of the surface and the double sheeted cover of the complex
plane is done in Fig. 7.6. In particular the center of the six squares are sent to
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y2 = x6− 1

Fig. 7.6. The Lawson surface is conformally equivalent to a surface made of squares
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the branch points, the vertices are sent to the two copies of 0 (black and dark
gray) and ∞ (white and light gray), the squares are sent to double sheeted
2-gons corresponding to a sextant.

Similarly to Sect. 7.4.2 we compute the period matrices Ωex and Ωin for
different resolutions utilizing weights imposed by the extrinsic and intrinsic
metric and compare the results with our conjectured period matrix for the
Lawson surface Ωl:

#vertices ‖Ωin −Ωl‖∞ ‖Ωex −Ωl‖∞
1162 1.68 · 10−3 1.68 · 10−3

2498 3.01 · 10−3 3.20 · 10−3

10090 8.55 · 10−3 8.56 · 10−3

Our first observation is that the matrices Ωex and Ωin almost coincide.
Hence the method for computing the ρ seems to have only little influence
on this result (compare also Sect. 7.4.2). Further we see that figures of the
higher resolution surface, i.e., with 2498 and 10090 vertices are worse than
the coarsest one with 1162 vertices. The mesh beautifying process was most
successful on the coarsest triangulation of the Lawson surface (Fig. 7.5). The
quality of the mesh has a significant impact on the accuracy of our compu-
tation: One can see that the triangles on the coarsest example are of even
shapes with comparable side lengths, while the finer resolution contains thin
triangles with small angles. The convergence speed proven in [Mer01] and
used in [Mer07] for period matrices is governed by this smallest angles, ac-
counting for the poor result. Therefore for this method to be applicable, the
data should be well suited. It is not enough to have very refined data if the
triangles themselves are not of a good shape. A further impediment to the
method is the fact that the triangulation should be Delaunay. If it is not, it
can be repaired by the algorithm described in [FSSB07].
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8.1 Introduction

There are several well-known ways to introduce a compact Riemann surface
which are also discussed in the present volume, e.g., via algebraic equations
or by means of some uniformization theorem, where the surface is introduced
as the quotient of the upper half-plane over the action of a Fuchsian group.
In this chapter we consider a less popular approach which is at the same
time, perhaps, the most elementary: one can simply consider the boundary
of a connected (but, generally, not simply connected) polyhedron in three
dimensional Euclidean space. This is a polyhedral surface which carries the
structure of a complex manifold (the corresponding system of holomorphic
local parameters is obvious for all points except the vertices; near a vertex
one should introduce the local parameter ζ = z2π/α, where α is the sum of
the angles adjacent to the vertex). In this way the Riemann surface arises
together with a conformal metric; this metric is flat and has conical singular-
ities at the vertices. Instead of a polyhedron one can also start from some ab-
stract simplicial complex, thinking of a polyhedral surface as glued from plane
triangles.

The present chapter is devoted to the spectral theory of the Laplacian on
such surfaces. The main goal is to study the determinant of the Laplacian
(acting in the trivial line bundle over the surface) as a functional on the
space of Riemann surfaces with conformal flat conical metrics (polyhedral
surfaces). The similar question for smooth conformal metrics and arbitrary
holomorphic bundles was very popular in the eighties and early nineties being
motivated by string theory. The determinants of Laplacians in flat singular
metrics are much less studied: among the very few appropriate references we
mention [DP89], where the determinant of the Laplacian in a conical metric
was defined via some special regularization of the diverging Liouville integral,
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and the question about the relation of such a definition with the spectrum of
the Laplacian remained open, and two papers [Kin93,AS94] dealing with flat
conical metrics on the Riemann sphere.

In [KK09] (see also [KK04]) the determinant of the Laplacian was studied
as a functional

Hg(k1, . . . , kM ) � (X , ω) �→ detΔ|ω|2

on the space Hg(k1, . . . , kM ) of equivalence classes of pairs (X , ω), where X
is a compact Riemann surface of genus g and ω is a holomorphic one-form
(an Abelian differential) with M zeros of multiplicities k1, . . . , kM . Here
detΔ|ω|2 stands for the determinant of the Laplacian in the flat metric |ω|2
having conical singularities at the zeros of ω. The flat conical metric |ω|2 con-
sidered in [KK09] is very special: the divisor of the conical points of this metric
is not arbitrary (it should be the canonical one, i.e., coincide with the divisor
of a holomorphic one-form), and the conical angles at the conical points are
integer multiples of 2π. Later in [KK07] this restrictive condition has been
eliminated in the case of polyhedral surfaces of genus one.

In the present chapter we generalize the results of [KK09] and [KK07] to
the case of polyhedral surfaces of an arbitrary genus. Moreover, we give a
short and self-contained survey of some basic facts from the spectral theory of
the Laplacian on flat surfaces with conical points. In particular, we discuss the
theory of self-adjoint extensions of this Laplacian and study the asymptotics
of the corresponding heat kernel.

8.2 Flat Conical Metrics on Surfaces

Following [Tro86] and [KK07], we discuss here flat conical metrics on compact
Riemann surfaces of an arbitrary genus.

8.2.1 Troyanov’s Theorem

Let
∑N
k=1 bkPk be a generalized (i.e., the coefficients bk are not necessary

integers) divisor on a compact Riemann surface X of genus g. Let also∑N
k=1 bk = 2g−2. Then, according to Troyanov’s theorem (see [Tro86]), there

exists a (unique up to a rescaling) conformal (i.e., giving rise to a complex
structure which coincides with that of X ) flat metric m on X which is smooth
in X \ {P1, . . . , PN} and has simple singularities of order bk at Pk. The latter
means that in a vicinity of Pk the metric m can be represented in the form

m = eu(z,z̄)|z|2bk |dz|2 , (8.1)

where z is a conformal coordinate and u is a smooth real-valued function. In
particular, if the conical angle βk = 2π(bk+1) satisfies βk > −1, the point Pk
is conical with this angle. Here we construct the metric m explicitly, giving
an effective proof of Troyanov’s theorem (cf. [KK07]).
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Fix a canonical basis of cycles on X (we assume that g ≥ 1, the case
g = 0 is trivial) and let E(P,Q) be the prime-form (see [Fay73]). Then for
any divisor D = r1Q1 + . . . rmQM − s1R1 − · · · − sNRN of degree zero on X
(here the coefficients rk, sk are positive integers) the meromorphic differential

ωD = dz log
∏M
k=1 E

rk(z,Qk)∏N
k=1 E

sk(z,Rk)

is holomorphic outside D and has first order poles at the points of D with
residues rk at Qk and −sk at Rk. Since the prime-form is single-valued along
the a-cycles, all a-periods of the differential ωD vanish.

Let {vα}gα=1 be the basis of holomorphic differentials normalized by∫
aα

vβ = δαβ and B the corresponding matrix of b-periods. Then all a- and
b-periods of the meromorphic differential

ΩD = ωD − 2πi
g∑

α,β=1

((�B)−1)αβ�
(∫ r1Q1+...rMQM

s1R1+...sNRN

vβ

)
vα

are purely imaginary (see [Fay73], p. 4).
Obviously, the differentials ωD and ΩD have the same structure of poles:

their difference is a holomorphic 1-form.
Choose a base-point P0 on X and introduce the following quantity

FD(P ) = exp
∫ P

P0

ΩD .

Clearly, FD is a meromorphic section of some unitary flat line bundle over X ,
the divisor of this section coincides with D.

Now we are ready to construct the metric m. Choose any holomorphic
differential w on X with, say, only simple zeros S1, . . . , S2g−2. Then one can
set m = |u|2, where

u(P ) = w(P )F(2g−2)S0−S1−...S2g−2(P )
N∏

k=1

[FPk−S0(P )]bk , (8.2)

and S0 is an arbitrary point.
Notice that in the case g = 1 the second factor in (8.2) is absent and the

remaining part is nonsingular at the point S0.

8.2.2 Distinguished Local Parameter

In a vicinity of a conical point the flat metric (8.1) takes the form

m = |h(z)|2|z|2b|dz|2
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with some holomorphic function h such that h(0) 	= 0. It is easy to show
(see, e. g., [Tro86], Proposition 2) that there exists a holomorphic change of
variable z = z(x) such that in the local parameter x

m = |x|2b|dx|2 .

We shall call the parameter x (unique up to a constant factor c, |c| = 1)
distinguished. In case b > −1 the existence of the distinguished parameter
means that in a vicinity of a conical point the surface X is isometric to the
standard cone with conical angle β = 2π(b + 1).

8.2.3 Euclidean Polyhedral Surfaces

In [Tro86] it is proved that any compact Riemann surface with flat confor-
mal conical metric admits a proper triangulation (i.e., each conical point is a
vertex of some triangle of the triangulation). This means that any compact
Riemann surface with a flat conical metric is a Euclidean polyhedral surface
(see [Bob11]), i.e., can be glued from Euclidean triangles. On the other hand
as it is explained in [Bob11] any compact Euclidean oriented polyhedral sur-
face gives rise to a Riemann surface with a flat conical metric. Therefore,
from now on we do not discern compact Euclidean polyhedral surfaces and
Riemann surfaces with flat conical metrics.

8.3 Laplacians on Polyhedral Surfaces: Basic Facts

Without claiming originality we give here a short self-contained survey of
some basic facts from the spectral theory of Laplacian on compact polyhedral
surfaces. We start with recalling the (slightly modified) Carslaw construc-
tion (1909) of the heat kernel on a cone, then we describe the set of self-
adjoint extensions of a conical Laplacian (these results are complementary to
Kondratjev’s study [Kon67] of elliptic equations on conical manifolds and are
well-known, being in the folklore since the sixties of the last century; their
generalization to the case of Laplacians acting on p-forms can be found in
[Moo99]). Finally, we establish the precise heat asymptotics for the Friedrichs
extension of the Laplacian on a compact polyhedral surface. It should be noted
that more general results on the heat asymptotics for Laplacians acting on
p-forms on piecewise flat pseudomanifolds can be found in [Che83].

8.3.1 The Heat Kernel on the Infinite Cone

We start from the standard heat kernel

H2π(x, y; t) =
1

4πt
exp{−(x− y) · (x − y)/4t} (8.3)
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in the space R
2 which we consider as the cone with conical angle 2π.

Introducing the polar coordinates (r, θ) and (ρ, ψ) in the x and y-planes,
one can rewrite (8.3) as the contour integral

H2π(x, y; t) =

1
16π2it

exp{−(r2 + ρ2)/4t}
∫

Cθ,ψ

exp{rρ cos(α− θ)/2t} cot
α− ψ

2
dα , (8.4)

where Cθ,ψ denotes the union of a small positively oriented circle centered
at α = ψ and the two vertical lines, l1 = (θ − π − i∞, θ − π + i∞) and
l2 = (θ + π + i∞, θ + π − i∞), having mutually opposite orientations.

To prove (8.4) one has to notice that
(1) � cos(α − θ) < 0 in vicinities of the lines l1 and l2 and, therefore, the

integrals over these lines converge.
(2) The integrals over the lines cancel due to the 2π-periodicity of the

integrand and the remaining integral over the circle coincides with (8.3) due
to the Cauchy Theorem.

Observe that one can deform the contour Cθ,ψ into the union, Aθ, of two
contours lying in the open domains {θ − π < �α < θ + π , �α > 0} and
{θ − π < �α < θ + π , �α < 0} respectively, the first contour goes from
θ +π + i∞ to θ−π + i∞, the second one goes from θ− π− i∞ to θ + π− i∞.
This leads to the following representation for the heat kernel H2π:

H2π(x, y; t) =

1
16π2it

exp{−(r2 + ρ2)/4t}
∫

Aθ

exp{rρ cos(α− θ)/2t} cot
α− ψ

2
dα . (8.5)

The latter representation admits a natural generalization to the case of
the cone Cβ with conical angle β, 0 < β < +∞. Notice here that in case

0 < β ≤ 2π the cone Cβ is isometric to the surface z3 =
√

(4π2

β2 − 1)(z2
1 + z2

2).
Namely, introducing the polar coordinates on Cβ , we see that the following

expression represents the heat kernel on Cβ :

Hβ(r, θ, ρ, ψ; t) =

1
8πβit

exp{−(r2 + ρ2)/4t}
∫

Aθ

exp{rρ cos(α− θ)/2t} cot
π(α− ψ)

β
dα . (8.6)

Clearly, expression (8.6) is symmetric with respect to (r, θ) and (ρ, ψ) and
is β-periodic with respect to the angle variables θ, ψ. Moreover, it satisfies
the heat equation on Cβ . Therefore, to verify that Hβ is in fact the heat
kernel on Cβ it remains to show that Hβ(·, y, t) −→ δ(· − y) as t → 0+. To
this end deform the contour Aψ into the union of the lines l1 and l2 and
(possibly many) small circles centered at the poles of cot π(·−ψ)

β in the strip
θ − π < �α < θ + π. The integrals over all the components of this union
except the circle centered at α = ψ vanish in the limit as t → 0+, whereas
the integral over the latter circle coincides with H2π .
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The Heat Asymptotics Near the Vertex

Proposition 1. Let R > 0 and Cβ(R) = {x ∈ Cβ : dist(x,O) < R}. Let also
dx denote the area element on Cβ. Then for some ε > 0
∫

Cβ(R)

Hβ(x, x; t) dx =
1

4πt
Area(Cβ(R)) +

1
12

(
2π
β
− β

2π

)
+ O(e−ε/t) (8.7)

as t→ 0+.

Proof (cf. [Fur94], p. 1433). Make in (8.6) the change of variable γ = α − ψ
and deform the contour Aθ−ψ into the contour Γ−

θ−ψ∪Γ
+
θ−ψ∪{|γ| = δ}, where

the oriented curve Γ−
θ−ψ goes from θ−ψ−π−i∞ to θ−ψ−π+i∞ and intersects

the real axis at γ = −δ, the oriented curve Γ+
θ−ψ goes from θ − ψ + π + i∞

to θ− ψ + π − i∞ and intersects the real axis at γ = δ, the circle {|γ| = δ} is
positively oriented and δ is a small positive number. Calculating the integral
over the circle {|γ| = δ} via the Cauchy Theorem, we get

Hβ(x, y; t)−H2π(x, y; t) =

1
8πβit

exp{−(r2 + ρ2)/4t}
∫

Γ−
θ−ψ∪Γ+

θ−ψ

exp{rρ cos(γ + ψ − θ)/2t} cot
πγ

β
dγ

(8.8)

and ∫

Cβ(R)

(
Hβ(x, x; t) − 1

4πt

)
dx =

1
8πit

∫ R

0

dr r
∫

Γ−
0 ∪Γ+

0

exp{−r2 sin2(γ/2)
t

} cot
πγ

β
dγ . (8.9)

The integration over r can be done explicitly and the right hand side of (8.9)
reduces to

1
16πi

∫

Γ−
0 ∪Γ+

0

cot(πγβ )

sin2(γ/2)
dγ + O(e−ε/t). (8.10)

(One can assume that � sin2(γ/2) is positive and separated from zero when
γ ∈ Γ−

0 ∪ Γ+
0 .) The contour of integration in (8.10) can be changed for a

negatively oriented circle centered at γ = 0. Since Res(
cot(πγβ )

sin2(γ/2)
, γ = 0) =

2
3 ( β2π −

2π
β ), we arrive at (8.7).

Remark 1. The Laplacian Δ corresponding to the flat conical metric (dρ)2 +
r2(dθ)2, 0 ≤ θ ≤ β on Cβ with domain C∞

0 (Cβ \ O) has infinitely many
self-adjoint extensions. Analyzing the asymptotics of (8.6) near the vertex O,
one can show that for any y ∈ Cβ and t > 0 the function Hβ(·, y; t) belongs
to the domain of the Friedrichs extension ΔF of Δ and does not belong to
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the domain of any other extension. Moreover, using a Hankel transform, it is
possible to get an explicit spectral representation of ΔF (this operator has
an absolutely continuous spectrum of infinite multiplicity) and to show that
the Schwartz kernel of the operator etΔF coincides with Hβ(·, ·; t) (see, e.g.,
[Tay97] formula (8.8.30) together with [Car10], p. 370.)

8.3.2 Heat Asymptotics for Compact Polyhedral Surfaces

Self-Adjoint Extensions of a Conical Laplacian

Let X be a compact polyhedral surface with vertices (conical points)
P1, . . . , PN . The Laplacian Δ corresponding to the natural flat conical metric
on X with domain C∞

0 (X \ {P1, . . . , PN}) (we remind the reader that the
Riemannian manifold X is smooth everywhere except the vertices) is not
essentially self-adjoint and one has to fix one of its self-adjoint extensions. We
are to discuss now the choice of a self-adjoint extension.

This choice is defined by the prescription of some particular asymptotical
behavior near the conical points to functions from the domain of the Laplacian;
it is sufficient to consider a surface with only one conical point P of the
conical angle β. More precisely, assume that X is smooth everywhere except
the point P and that some vicinity of P is isometric to a vicinity of the vertex
O of the standard cone Cβ (of course, now the metric on X no more can be
flat everywhere in X \ P unless the genus g of X is greater than one and
β = 2π(2g − 1)).

For k ∈ N0 introduce the functions V k± on Cβ by

V k±(r, θ) = r±
2πk
β exp{i 2πkθβ } ; k > 0 ,

V 0
+ = 1 , V 0

− = log r .

Clearly, these functions are formal solutions to the homogeneous problem
Δu = 0 on Cβ . Notice that the functions V k− grow near the vertex but are
still square integrable in its vicinity if k < β

2π .
Let Dmin denote the graph closure of C∞

0 (X \ P ), i.e.,

U ∈Dmin⇔∃um ∈ C∞
0 (X \P ),W ∈ L2(X ) : um→Uand Δum→W in L2(X ) .

Define the space H2
δ (Cβ) as the closure of C∞

0 (Cβ \O) with respect to the
norm

||u;H2
δ (Cβ)||2 =

∑

|α|≤2

∫

Cβ

r2(δ−2+|α|)|Dα
xu(x)|2dx.

Then for any δ ∈ R such that δ− 1 	= 2πk
β , k ∈ Z one has the a priori estimate

||u;H2
δ (Cβ)|| ≤ c||Δu;H0

δ (Cβ)|| (8.11)
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for any u ∈ C∞
0 (Cβ \ O) and some constant c being independent of u (see,

e.g., [NP92], Chap. 2).
It follows from Sobolev’s imbedding theorem that for functions from

u ∈ H2
δ (Cβ) one has the point-wise estimate

rδ−1|u(r, θ)| ≤ c||u;H2
δ (Cβ)|| . (8.12)

Applying estimates (8.11) and (8.12) with δ = 0, we see that functions u
from Dmin must obey the asymptotics u(r, θ) = O(r) as r→ 0.

Now the description of the set of all self-adjoint extensions of Δ looks as
follows. Let χ be a smooth function on X which is equal to 1 near the vertex
P and such that in a vicinity of the support of χ one has that X is isometric
to Cβ . Denote by M the linear subspace of L2(X ) spanned by the functions
χV k

± with 0 ≤ k < β
2π . The dimension, 2d, of M is even. To get a self-adjoint

extension of Δ one chooses a subspace N of M of dimension d such that

(Δu, v)L2(X ) − (u,Δv)L2(X ) = lim
ε→0+

∮

r=ε

(
u
∂v

∂r
− v

∂u

∂r

)
ds = 0

for any u, v ∈ N, where ds is the length element on the circle r = ε. To any
such subspace N there corresponds a self-adjoint extension ΔN of Δ with
domain N +Dmin.

The extension corresponding to the subspace N spanned by the functions
χV k

+ , 0 ≤ k < β
2π coincides with the Friedrichs extension of Δ. The functions

from the domain of the Friedrichs extension are bounded near the vertex.
From now on we denote by Δ the Friedrichs extension of the Laplacian on

the polyhedral surface X ; other extensions will not be considered here.

Heat Asymptotics

Theorem 1. Let X be a compact polyhedral surface with vertices P1, . . . , PN
of conical angles β1, . . . , βN . Let Δ be the Friedrichs extension of the Laplacian
defined on functions from C∞

0 (X \ {P1, . . . , PN}). Then

1. The spectrum of the operator Δ is discrete, all the eigenvalues of Δ have
finite multiplicity.

2. Let H(x, y; t) be the heat kernel for Δ. Then for some ε > 0

Tr etΔ =
∫

X
H(x, x; t) dx =

Area(X )
4πt

+
1
12

N∑

k=1

{
2π
βk
− βk

2π

}
+ O(e−ε/t),

(8.13)
as t→ 0+.

3. The counting function, N(λ), of the spectrum of Δ obeys the asymptotics
N(λ) = O(λ) as λ→ +∞.
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Proof. (1) The proof of the first statement is a standard exercise (cf. [Kin93]).
We indicate only the main idea leaving the details to the reader. Introduce
the closure, H1(X ), of C∞

0 (X \{P1, . . . , PN} with respect to the norm |||u||| =
||u;L2||+ ||∇u;L2||. It is sufficient to prove that any bounded set S in H1(X )
is precompact in the L2-topology (this will imply the compactness of the self-
adjoint operator (I −Δ)−1). Moreover, one can assume that the supports of
functions from S belong to a small ball B centered at a conical point P . Now
to prove the precompactness of S it is sufficient to make use of the expansion
with respect to eigenfunctions of the Dirichlet problem in B and the diagonal
process.

(2) Let X = ∪Nj=0Kj, where Kj , j = 1, . . . , N is a neighborhood of the
conical point Pj which is isometric to Cβj (R) with some R > 0, and K0 =
X \ ∪Nj=1Kj .

Let also Kε1
j ⊃ Kj and Kε1

j be isometric to Cβj (R + ε1) with some ε1 > 0
and j = 1, . . . , N .

Fixing t > 0 and x, y ∈ Kj with j > 0, one has
∫ t

0

ds
∫

K
ε1
j

(ψ{Δz − ∂s}φ− φ{Δz + ∂s}ψ) dz = (8.14)

∫ t

0

ds
∫

∂K
ε1
j

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dl(z)−

∫

K
ε1
j

(φ(z, t)ψ(z, t)− φ(z, 0)ψ(z, 0)) dz

(8.15)

with φ(z, t) = H(z, y; t)−Hβj(z, y; t) and ψ(z, t) = Hβj(z, x; t− s). (Here it is
important that we are working with the heat kernel of the Friedrichs extension
of the Laplacian, for other extensions the heat kernel has growing terms in
the asymptotics near the vertex and the right hand side of (8.14) gets extra
terms.) Therefore,

Hβj (x, y; t)−H(x, y; t) =
∫ t

0

ds
∫

∂K
ε1
j

(
H(y, z; s)

∂Hβj(x, z; t− s)
∂n(z)

−Hβj (z, x; t− s)
∂H(z, y; s)

∂n(z)

)
dl(z)

= O(e−ε2/t)

with some ε2 > 0 as t→ 0+ uniformly with respect to x, y ∈ Kj . This implies
that ∫

Kj

H(x, x; t)dx =
∫

Kj

Hβj(x, x; t)dx + O(e−ε2/t) . (8.16)

Since the metric on X is flat in a vicinity of K0, one has the asymptotics
∫

K0

H(x, x; t)dx =
Area(K0)

4πt
+ O(e−ε3/t)

with some ε3 > 0 (cf. [MS67]). Now (8.13) follows from (8.7).
(3) The third statement of the theorem follows from the second one due

to the standard Tauberian arguments.
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8.4 Determinant of the Laplacian: Analytic Surgery
and Polyakov-Type Formulas

Theorem 1 opens a way to define the determinant, detΔ, of the Laplacian
on a compact polyhedral surface via the standard Ray–Singer regularization.
Namely introduce the operator ζ-function

ζΔ(s) =
∑

λk>0

1
λsk

, (8.17)

where the summation goes over all strictly positive eigenvalues λk of the oper-
ator −Δ (counting multiplicities). Due to the third statement of Theorem 1,
the function ζΔ is holomorphic in the half-plane {�s > 1}. Moreover, due to
the equality

ζΔ(s) =
1

Γ (s)

∫ ∞

0

{
Tr etΔ − 1

}
ts−1 dt (8.18)

and the asymptotics (8.13), one has the equality

ζΔ(s) =
1

Γ (s)

{
Area (X )
4π(s− 1)

+

[
1
12

N∑

k=1

{
2π
βk
− βk

2π

}
− 1

]
1
s

+ e(s)

}
, (8.19)

where e(s) is an entire function. Thus, ζΔ is regular at s = 0 and one can de-
fine the ζ-regularized determinant of the Laplacian via usual ζ-regularization
(cf. [Ray73]):

detΔ := exp{−ζ′Δ(0)} . (8.20)

Moreover, (8.19) and the relation
∑N
k=1 bk = 2g − 2; bk = βk

2π − 1 yield

ζΔ(0) =
1
12

N∑

k=1

{
2π
βk
− βk

2π

}
− 1 =

(
χ(X )

6
− 1

)
+

1
12

N∑

k=1

{
2π
βk

+
βk
2π
− 2

}
,

(8.21)
where χ(X ) = 2− 2g is the Euler characteristics of X .

It should be noted that the term χ(X )
6 − 1 at the right hand side of (8.21)

coincides with the value at zero of the operator ζ-function of the Laplacian
corresponding to an arbitrary smooth metric on X (see, e. g., [OPS88], p. 155).

Let m and m̃ = κm, κ > 0 be two homothetic flat metrics with the same
conical points with conical angles β1, . . . , βN . Then (8.17), (8.20) and (8.21)
imply the following rescaling property of the conical Laplacian:

detΔm̃ = κ
−(χ(X)

6 −1)− 1
12

∑N
k=1

{
2π
βk

+
βk
2π−2

}

detΔm . (8.22)
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8.4.1 Analytic Surgery

Let m be an arbitrary smooth metric on X and denote by Δm the correspond-
ing Laplacian. Consider N nonoverlapping connected and simply connected
domains D1, . . . , DN ⊂ X bounded by closed curves γ1, . . . , γN and introduce
also the domain Σ = X \ ∪Nk=1Dk and the contour Γ = ∪Nk=1γk.

Define the Neumann jump operator R : C∞(Γ )→ C∞(Γ ) by

R(f)|γk = ∂ν(V −
k − V +

k ) ,

where ν is the outward normal to γk = ∂Dk, the functions V −
k and V + are

the solutions of the boundary value problems ΔmV −
k = 0 in Dk, V −|∂Dk = f

and ΔmV + = 0 in Σ, V +|Γ = f . The Neumann jump operator is an elliptic
pseudodifferential operator of order 1, and it is known that one can define its
determinant via the standard ζ-regularization.

In what follows it is crucial that the Neumann jump operator does not
change if we vary the metric within the same conformal class.

Let (Δm|Dk) and (Δm|Σ) be the operators of the Dirichlet boundary
problem for Δm in domains Dk and Σ respectively, the determinants of these
operators also can be defined via ζ-regularization.

Due to Theorem B∗ from [BFK92], we have

detΔm =

{
N∏

k=1

det(Δm|Dk)

}
det(Δm|Σ) detR {Area(X ,m)} {l(Γ )}−1 ,

(8.23)
where l(Γ ) is the length of the contour Γ in the metric m

Remark 2. We have excluded the zero modes of an operator from the defi-
nition of its determinant, so we are using the same notation detA for the
determinants of operators A with and without zero modes. In [BFK92] the
determinant of an operator A with zero modes is always equal to zero, and
what we call here detA is called the modified determinant in [BFK92] and
denoted there by det∗ A.

An analogous statement holds for the flat conical metric. Namely let X
be a compact polyhedral surface with vertices P1, . . . , PN and g be a cor-
responding flat metric with conical singularities. Choose the domains Dk,
k = 1, . . . , N being (open) nonoverlapping disks centered at Pk and let (Δ|Dk)
be the Friedrichs extension of the Laplacian with domain C∞

0 (Dk \ Pk) in
L2(Dk). Then formula (8.23) is still valid with Δm = Δ (cf. [KK04] or the
recent paper [LMP07] for a more general result).

8.4.2 Polyakov’s Formula

We state this result in the form given in ([Fay92], p. 62). Let m1 = ρ−2
1 (z, z̄)d̂z,

where d̂z = dz∧dz
−2i = dx ∧ dy, and m2 = ρ−2

2 (z, z̄)d̂z be two smooth
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conformal metrics on X and let detΔm1 and detΔm2 be the determinants
of the corresponding Laplacians (defined via the standard Ray–Singer regu-
larization). Then

detΔm2

detΔm1
=

Area(X ,m2)
Area(X ,m1)

exp
{

1
3π

∫

X
log

ρ2

ρ1
∂2
zz̄ log(ρ2ρ1)d̂z

}
. (8.24)

8.4.3 Analog of Polyakov’s Formula for a Pair
of Flat Conical Metrics

Proposition 2. Let a1, . . . , aN and b1, . . . , bM be real numbers which are
greater than −1 and satisfy a1 + · · · + aN = b1 + · · · + bM = 2g − 2. Let
also T be a connected C1-manifold and let

T � t �→m1(t), T � t �→m2(t)

be two C1-families of flat conical metrics on X such that

1. For any t ∈ T the metrics m1(t) and m2(t) define the same conformal
structure on X

2. m1(t) has conical singularities at P1(t), . . . , PN (t) ∈ X with conical angles
2π(a1 + 1), . . . , 2π(aN + 1)

3. m2(t) has conical singularities at Q1(t), . . . , QM (t) ∈ L with conical angles
2π(b1 + 1), . . . , 2π(bM + 1)

4. For any t ∈ T the sets {P1(t), . . . , PN (t)} and {Q1(t), . . . , QM (t)} do not
intersect

Let xk be distinguished local parameter for m1 near Pk and yl be distinguished
local parameter for m2 near Ql (we omit the argument t).

Introduce the functions fk, gl and the complex numbers fk, gl by

m2 = |fk(xk)|2|dxk|2 near Pk; fk := fk(0) ,

m1 = |gl(yl)|2|dyl|2 near Ql; gl := gl(0) .

Then the following equality holds

detΔm1

detΔm2
= C

Area (X ,m1)
Area (X ,m2)

∏M
l=1 |gl|bl/6∏N
k=1 |fk|ak/6

, (8.25)

where the constant C is independent of t ∈ T .

Proof. Take ε > 0 and introduce the disks Dk(ε), k = 1, . . . ,M +N centered
at the points P1, . . . , PN , Q1, . . . , QM ; Dk(ε) = {|xk| ≤ ε} for k = 1, . . . , N
and DN+l = {|yl| ≤ ε} for l = 1, . . . ,M . Let hk : R+ → R, k = 1, . . . , N + M
be smooth positive functions such that
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1.
∫ 1

0

h2
k(r)rdr =

{∫ 1

0
r2ak+1dr = 1

2ak+2 , if k = 1, . . . , N∫ 1

0
r2bl+1dr = 1

2bl+2 , if k = N + l, l = 1, . . . ,M

2.

hk(r) =

{
rak for r ≥ 1 if k = 1, . . . , N
rbl for r ≥ 1 if k = N + l, l = 1, . . . ,M

Define two families of smooth metrics mε
1, mε

2 on X via

mε
1(z) =

{
ε2akh2

k(|xk|/ε)|dxk|2, z ∈ Dk(ε), k = 1, . . . , N
m(z), z ∈ X \ ∪Nk=1Dk(ε) ,

mε
2(z) =

{
ε2blh2

N+l(|yl|/ε)|dyl|2, z ∈ DN+l(ε), l = 1, . . . ,M
m(z), z ∈ X \ ∪Ml=1DN+l(ε) .

The metrics mε
1,2 converge to m1,2 as ε→ 0 and

Area(X ,mε
1,2) = Area(X ,m1,2) .

Lemma 1. Let ∂t be the differentiation with respect to one of the coordinates
on T and let detΔmε

1,2 be the standard ζ-regularized determinant of the
Laplacian corresponding to the smooth metric mε

1,2. Then

∂t log detΔm1,2 = ∂t log detΔmε
1,2 . (8.26)

To establish the lemma consider for definiteness the pair m1 and m1(ε). Due
to the analytic surgery formulas from Sect. 8.4.1 one has

detΔm1=

{
N∏

k=1

det(Δm1 |Dk(ε))

}
det(Δm1 |Σ) detR {Area(X ,m1)} {l(Γ )}−1,

(8.27)

detΔmε
1=

{
N∏

k=1

det(Δmε
1 |Dk(ε))

}
det(Δmε

1 |Σ) detR {Area(X ,mε
1)} {l(Γ )}−1,

(8.28)
with Σ = X \ ∪Nk=1Dk(ε).

Notice that the variations of the logarithms of the first factors in the right
hand sides of (8.27) and (8.28) vanish (these factors are independent of t)
whereas the variations of the logarithms of all the remaining factors coincide.
This leads to (8.26).



240 A. Kokotov

By virtue of Lemma 1 one has the relation

∂t

{
log

detΔm1

Area(X ,m1)
− log

detΔm2

Area(X ,m2)

}
=

∂t

{
log

detΔmε
1

Area(X ,mε
1)
− log

detΔmε
2

Area(X ,mε
2)

}
. (8.29)

By virtue of Polyakov’s formula the r.h.s. of (8.29) can be rewritten as

N∑

k=1

1
3π

∂t

∫

Dk(ε)

(logHk)xkx̄k log |fk|d̂xk −

M∑

l=1

1
3π

∂t

∫

DN+l(ε)

(logHN+l)yl,ȳl log |gl|d̂yl , (8.30)

where Hk(xk) = ε−akh−1
k (|xk|/ε), k = 1, . . . , N and HN+l(yl) = ε−blh−1

N+l

(|yl|/ε), l = 1, . . . ,M . Notice that for k = 1, . . . , N the function Hk coincides
with |xk|−ak in a vicinity of the circle {|xk| = ε} and the Green formula
implies that

∫

Dk(ε)

(logHk)xkx̄k log |fk|d̂wk =
i
2

{∮

|xk|=ε
(log |xk|−ak)x̄k log |fk|dx̄k+

+
∮

|xk|=ε
log |xk|−ak(log |fk|)xkdxk +

∫

Dk(ε)

(log |fk|)xkx̄k logHkdxk ∧ dx̄k

}

and, therefore,

∂t

∫

Dk(ε)

(logHk)xkx̄k log |fk|d̂xk = −akπ

2
∂t log |fk|+ o(1) (8.31)

as ε→ 0. Analogously

∂t

∫

DN+l(ε)

(logHN+l)ylȳl log |gl|d̂yl = −blπ

2
∂t log |gl|+ o(1) (8.32)

as ε→ 0.
Formula (8.25) follows from (8.29), (8.31) and (8.32). �

8.4.4 Lemma on Three Polyhedra

For any metric m on X denote by Q(m) the ratio detΔm/Area(X ,m).
Consider three families of flat conical metrics l(t) ∼ m(t) ∼ n(t) on

X (here ∼ means conformal equivalence), where the metric l(t) has con-
ical points P1(t), . . . , PL(t) with conical angles 2π(a1 + 1), . . . , 2π(aL + 1),
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the metric m(t) has conical points Q1(t), . . . , QM (t) with conical angles
2π(b1 + 1), . . . , 2π(bM + 1) and the metric n(t) has conical points R1(t), . . . ,
RN (t) with conical angles 2π(c1 + 1), . . . , 2π(cN + 1).

Let xk be the distinguished local parameter for l(t) near Pk(t) and let
m(t) = |fk(xk)|2|dxk|2 and n(t) = |gk(xk)|2|dxk|2 near Pk(t). Let ξ be an
arbitrary conformal local coordinate in a vicinity of the point Pk(t). Then one
has m = |f(ξ)|2|dξ|2 and n = |g(ξ)|2|dξ|2 with some holomorphic functions f
and g and the ratio

m(t)
n(t)

(Pk(t)) :=
|f(0)|2
|g(0)|2

is independent of the choice of the conformal local coordinate. In particular
it coincides with the ratio |fk(0)|2/|gk(0)|2.

From Proposition 2, one gets the relation

1 =
{

Q(l(t))
Q(m(t))

Q(m(t))
Q(n(t))

Q(n(t))
Q(l(t))

}−12

=

C
N∏

i=1

[
l(t)
m(t)

(Ri(t))
]ci L∏

j=1

[
m(t)
n(t)

(Pj(t))
]aj M∏

k=1

[
n(t)
l(t)

(Qk(t))
]bk

, (8.33)

where the constant C is independent of t.
From the following statement (which we call the lemma on three polyhedra)

one can see that the constant C in (8.33) is equal to 1.
Lemma 2. Let X be a compact Riemann surface and let l, m and n be
three conformal flat conical metrics on X . Suppose that the metric l has
conical points P1, . . . , PL with conical angles 2π(a1 + 1), . . . , 2π(aL + 1), the
metric m has conical points Q1, . . . , QM with conical angles 2π(b1 + 1), . . . ,
2π(bM + 1) and the metric n has conical points R1, . . . , RN with conical an-
gles 2π(c1 + 1), . . . , 2π(cN + 1). (All the points Pl, Qm, Rn are supposed to
be distinct.) Then one has the relation

N∏

i=1

[
l
m

(Ri)
]ci L∏

j=1

[m
n

(Pj)
]aj M∏

k=1

[n
l
(Qk)

]bk
= 1 . (8.34)

Proof. When all three metrics l, m and n have trivial holonomy, i.e., one
has l = |ω1|2, m = |ω2|2 and n = |ω3|2 with some holomorphic one-forms
ω1, ω2 and ω3, relation (8.34) is an immediate consequence of the Weil reci-
procity law (see [GH78], §2.3). In the general case the statement reduces to
an analog of the Weil reciprocity law for harmonic functions with isolated
singularities. %&

8.5 Polyhedral Tori

Here we establish a formula for the determinant of the Laplacian on a poly-
hedral torus, i.e., a Riemann surface of genus one with flat conical metric. We
do this by comparing this determinant with the determinant of the Laplacian
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corresponding to the smooth flat metric on the same torus. For the latter
Laplacian the spectrum is easy to find and the determinant is explicitly known
(it is given by the Ray–Singer formula stated below).

In this section X is an elliptic (g = 1) curve and it is assumed that X
is the quotient of the complex plane C by the lattice generated by 1 and σ,
where �σ > 0. The differential dz on C gives rise to a holomorphic differential
v0 on X with periods 1 and σ.

Ray–Singer Formula

Let Δ be the Laplacian on X corresponding to the flat smooth metric |v0|2.
The following formula for detΔ was proved in [Ray73]:

detΔ = C|�σ|2|η(σ)|4 , (8.35)

where C is a σ-independent constant and η is the Dedekind eta-function.

8.5.1 Determinant of the Laplacian on a Polyhedral Torus

Let
∑N
k=1 bkPk be a generalized divisor on X with

∑N
k=1 bk = 0 and assume

that bk > −1 for all k. Let m be a flat conical metric corresponding to this
divisor via Troyanov’s theorem. Clearly, it has a finite area and is defined
uniquely when this area is fixed. Fixing numbers b1, . . . , bN > −1 such that∑N

k=1 bk = 0, we define the spaceM(b1, . . . , bN) as the moduli space of pairs
(X ,m), where X is an elliptic curve and m is a flat conformal metric on X
having N conical singularities with conical angles 2π(bk + 1), k = 1, . . . , N .
The spaceM(b1, . . . , bN) is a connected orbifold of real dimension 2N + 3.

We are going to give an explicit formula for the function

M(β1, . . . , βN) � (X ,m) �→ detΔm .

Write the normalized holomorphic differential v0 on the elliptic curve
X in the distinguished local parameter xk near the conical point Pk
(k = 1, . . . , N) as

v0 = fk(xk)dxk

and define
fk := fk(xk)|xk=0, k = 1, . . . , N . (8.36)

Theorem 2. The following formula holds true

detΔm = C|�σ|Area(X ,m) |η(σ)|4
N∏

k=1

|fk|−bk/6 , (8.37)

where C is a constant depending only on b1, . . . , bN .

Proof. The theorem immediately follows from (8.35) and (8.25).
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8.6 Polyhedral Surfaces of Higher Genus

Here we generalize the results of the previous section to the case of polyhedral
surfaces of an arbitrary genus. Among all polyhedral surfaces of genus g ≥ 1
we distinguish flat surfaces with trivial holonomy. In our calculation of the
determinant of the Laplacian, it is this class of surfaces which plays the role
of the smooth flat tori in genus one. For flat surfaces with trivial holonomy
we find an explicit expression for the determinant of the Laplacian which
generalizes the Ray–Singer formula (8.35) for smooth flat tori. As we did
in genus one, comparing two determinants of the Laplacians by means of
Proposition 2, we derive a formula for the determinant of the Laplacian on a
general polyhedral surface.

8.6.1 Flat Surfaces with Trivial Holonomy and Moduli Spaces
of Holomorphic Differentials on Riemann Surfaces

We follow [KZ03] and Zorich’s survey [Zor06]. Outside the vertices a Euclidean
polyhedral surface X is locally isometric to a Euclidean plane and one
can define the parallel transport along paths on the punctured surface
X \ {P1, . . . , PN}. The parallel transport along a homotopically nontrivial
loop in X \{P1, . . . , PN} is generally nontrivial. If, e.g., a small loop encircles
a conical point Pk with conical angle βk, then a tangent vector to X turns by
βk after the parallel transport along this loop.

A Euclidean polyhedral surface X is called a surface with trivial holonomy
if the parallel transport along any loop in X \ {P1, . . . , PN} does not change
tangent vectors to X .

All conical points of a surface with trivial holonomy must have conical
angles which are integer multiples of 2π.

A flat conical metric g on a compact real oriented two-dimensional man-
ifold X equips X with the structure of a compact Riemann surface, if this
metric has trivial holonomy then it necessarily has the form g = |w|2, where
w is a holomorphic differential on the Riemann surface X (see [Zor06]). The
holomorphic differential w has zeros at the conical points of the metric g. The
multiplicity of the zero at the point Pm with the conical angle 2π(km + 1) is
equal to km.1

The holomorphic differential w is defined up to a unitary complex factor.
This ambiguity can be avoided if the surface X is provided with a distinguished

1 There exist polyhedral surfaces with nontrivial holonomy whose conical angles
are all integer multiples of 2π. To construct an example take a compact Riemann
surface X of genus g > 1 and choose 2g − 2 points P1, . . . , P2g−2 on X in such
a way that the divisor P1 + · · · + P2g−2 is not in the canonical class. Consider
the flat conical conformal metric m corresponding to the divisor P1 + · · ·+P2g−2

according to the Troyanov theorem. This metric must have nontrivial holonomy
and all its conical angles are equal to 4π.
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direction (see [Zor06]), and it is assumed that w is real along this distinguished
direction. In what follows we always assume that surfaces with trivial holon-
omy are provided with such a direction.

Thus, to a Euclidean polyhedral surface of genus g with trivial holonomy
we put into correspondence a pair (X , w), where X is a compact Riemann
surface and ω is a holomorphic differential on this surface. This means that
we get an element of the moduli space, Hg, of holomorphic differentials over
Riemann surfaces of genus g (see [KZ03]).

The space Hg is stratified according to the multiplicities of zeros of w.
Denote by Hg(k1, . . . , kM ) the stratum of Hg, consisting of differentials

w which have M zeros on X of multiplicities (k1, . . . , kM ). Denote the zeros
of w by P1, . . . , PM ; then the divisor of the differential w is given by (w) =∑M

m=1 kmPm. Let us choose a canonical basis of cycles (aα, bα) on the Riemann
surface X and cut X along these cycles starting at the same point to get the
fundamental polygon X̂ . Inside X̂ we choose M−1 (homology classes of) paths
lm on X \(w) connecting the zero P1 with other zeros Pm of w, m = 2, . . . ,M .
Then the local coordinates onHg(k1, . . . , kM ) can be chosen as follows [KZ97]:

Aα :=
∮

aα

w , Bα :=
∮

bα

w , zm :=
∫

lm

w , α = 1, . . . , g; m = 2, . . . ,M .

(8.38)

The area of the surface X in the metric |w|2 can be expressed in terms of
these coordinates as follows:

Area(X , |w|2) = �
g∑

α=1

AαB̄α .

If all zeros of w are simple, we have M = 2g − 2; therefore, the dimension of
the highest stratum Hg(1, . . . , 1) equals 4g − 3.

The Abelian integral z(P ) =
∫ P
P1

w provides a local coordinate in a neigh-
borhood of any point P ∈ X except the zeros P1, . . . , PM . In a neighborhood
of Pm the local coordinate can be chosen to be (z(P )− zm)1/(km+1).

Remark 3. The following construction helps to visualize these coordinates in
the case of the highest stratum Hg(1, . . . , 1).

Consider g parallelograms Π1, . . . , Πg in the complex plane with coordi-
nate z having the sides (A1, B1), . . . , (Ag, Bg). Provide these parallelograms
with a system of cuts

[0, z2], [z3, z4], . . . , [z2g−3, z2g−2]

(each cut should be repeated on two different parallelograms). Identifying
opposite sides of the parallelograms and gluing the obtained g tori along
the cuts, we get a compact Riemann surface X of genus g. Moreover, the
differential dz on the complex plane gives rise to a holomorphic differential



8 On Spectral Theory of Laplacian on Compact Polyhedral Surfaces 245

w on X which has 2g − 2 zeros at the ends of the cuts. Thus, we get a
point (X , w) from Hg(1, . . . , 1). It can be shown that any generic point of
Hg(1, . . . , 1) can be obtained via this construction; more sophisticated gluing
is required to represent points of other strata, or non generic points of the
stratum Hg(1, . . . , 1).

To shorten the notations it is convenient to consider the coordinates Aα,
Bα, zm altogether. Namely, in the sequel we shall denote them by ζk, k =
1, . . . , 2g + M − 1, where

ζα := Aα , ζg+α := Bα , α = 1, . . . , g , ζ2g+m := zm+1 , m = 1, . . . ,M −1 .
(8.39)

Let us also introduce corresponding cycles sk, k = 1, . . . , 2g + M − 1, as
follows:

sα = −bα , sg+α = aα , α = 1, . . . , g ; (8.40)

the cycle s2g+m, m = 1, . . . ,M − 1 is defined to be the small circle with
positive orientation around the point Pm+1.

Variational Formulas on the Spaces of Holomorphic Differentials

In the previous section we introduced the coordinates on the space of surfaces
with trivial holonomy and fixed the type of conical singularities. Here we
study the behavior of basic objects on these surfaces under the change of the
coordinates. In particular, we derive variational formulas of Rauch type for
the matrix of b-periods of the underlying Riemann surfaces. We also give
variational formulas for the Green function, individual eigenvalues, and the
determinant of the Laplacian on these surfaces.

Rauch formulas on the spaces of holomorphic differentials. For any com-
pact Riemann surface X we introduce the prime-form E(P,Q) and the canon-
ical meromorphic bidifferential

w(P,Q) = dPdQ logE(P,Q) (8.41)

(see [Fay92]). The bidifferential w(P,Q) has the following local behavior as
P → Q:

w(P,Q) =
(

1
(x(P ) − x(Q))2

+
1
6
SB(x(P )) + o(1)

)
dx(P )dx(Q) , (8.42)

where x(P ) is a local parameter. The term SB(x(P )) is a projective connection
which is called the Bergman projective connection (see [Fay92]).

Denote by vα(P ) the basis of holomorphic 1-forms on X normalized by∫
aα

vβ = δαβ .
The matrix of b-periods of the surface X is given by Bαβ :=

∮
bα

vβ .
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Proposition 3. (see [KK09]) Let a pair (X , w) belong to the space
Hg(k1, . . . , kM ). Under variations of the coordinates on Hg(k1, . . . , kM ) the
normalized holomorphic differentials and the matrix of b-periods of the surface
X behave as follows:

∂vα(P )
∂ζk

∣∣∣
z(P )

=
1

2πi

∮

sk

vα(Q)w(P,Q)
w(Q)

, (8.43)

∂Bαβ

∂ζk
=
∮

sk

vαvβ
w

, (8.44)

where k = 1, . . . , 2g+M−1; we assume that the local coordinate z(P ) =
∫ P
P1

w
is kept constant under differentiation.

Variation of the resolvent kernel and eigenvalues. For a pair (X , w) from
Hg(k1, . . . , kM ) introduce the Laplacian Δ := Δ|w|2 in the flat conical metric
|w|2 on X (recall that we always deal with the Friedrichs extensions). The
corresponding resolvent kernel G(P,Q;λ), λ ∈ C \ sp (Δ)

• Satisfies (ΔP−λ)G(P,Q;λ) = (ΔQ−λ)G(P,Q;λ) = 0 outside the diagonal
{P = Q}

• Is bounded near the conical points, i.e., for any P ∈ X \ {P1, . . . , PM}

G(P,Q;λ) = O(1)

as Q→ Pk, k = 1, . . . ,M
• Obeys the asymptotics

G(P,Q;λ) =
1
2π

log |x(P )− x(Q)|+ O(1)

as P → Q, where x(·) is an arbitrary (holomorphic) local parameter near P

The following proposition is an analog of the classical Hadamard formula for
the variation of the Green function of the Dirichlet problem in a plane domain.

Proposition 4. The following variational formulas for the resolvent kernel
G(P,Q;λ) hold:

∂G(P,Q;λ)
∂Aα

= 2i
∫

bα

ω(P,Q;λ) , (8.45)

∂G(P,Q;λ)
∂Bα

= −2i
∫

aα

ω(P,Q;λ) , (8.46)

where

ω(P,Q;λ) = G(P, z;λ)Gzz̄(Q, z;λ)dz + Gz(P, z;λ)Gz(Q, z;λ)dz
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is a closed 1-form and α = 1, . . . , g;

∂G(P,Q;λ)
∂zm

= −2i lim
ε→0

∮

|z−zm|=ε
Gz(z, P ;λ)Gz(z,Q;λ)dz , (8.47)

where m = 2, . . . ,M . It is assumed that the coordinates z(P ) and z(Q) are
kept constant under variation of the moduli Aα, Bα, zm.

Remark 4. One can combine the formulas (8.45-8.47) into a single formula:

∂G(P,Q;λ)
∂ζk

=

−2i
{∫

sk

G(R,P ;λ)∂R∂RG(R,Q;λ) + ∂RG(R,P ;λ)∂RG(R,Q;λ)
w(R)

}
, (8.48)

where k=1, . . . , 2g+M-1.

Proof. We start with the following integral representation of a solution u to
the homogeneous equation Δu− λu = 0 inside the fundamental polygon X̂ :

u(ξ, ξ̄) = −2i
∫

∂X̂
G(z, z̄, ξ, ξ̄;λ)uz̄(z, z̄)dz̄ + Gz(z, z̄, ξ, ξ̄;λ)u(z, z̄)dz . (8.49)

Cutting the surface X along the basic cycles, we notice that the function
Ġ(P, · ;λ) = ∂G(P, · ;λ)

∂Bβ
is a solution to the homogeneous equation Δu−λu = 0

inside the fundamental polygon (the singularity of G(P,Q;λ) at Q = P disap-
pears after differentiation) and that the functions Ġ(P, · ;λ) and Ġz̄(P, · ;λ)
have the jumps Gz(P, · ;λ) and Gzz̄(P, · ;λ) on the cycle aβ . Applying (8.49)
with u = Ġ(P, · ;λ), we get (8.46). Formula (8.45) can be proved in the same
manner.

The relation dω(P,Q;λ) = 0 immediately follows from the equality
Gzz̄(z, z̄, P ;λ) = λ

4G(z, z̄, P ;λ).
Let us prove (8.47). From now on we assume for simplicity that km = 1,

where km is the multiplicity of the zero Pm of the holomorphic differential w.
Applying Green’s formula (8.49) to the domain X̂ \ {|z − zm| < ε} and

u = Ġ = ∂G
∂zm

, one gets
Ġ(P,Q;λ) =

2i lim
ε→0

∮

|z−zm|=ε
Ġz̄(z, z̄, Q;λ)G(z, z̄, P ;λ)dz̄ + Ġ(z, z̄, Q;λ)Gz(z, z̄, P ;λ)dz .

(8.50)

Observe that the function xm �→ G(xm, x̄m, P ;λ) (defined in a small neigh-
borhood of the point xm = 0) is a bounded solution to the elliptic equation

∂2G(xm, x̄m, P ;λ)
∂xm∂x̄m

− λ|xm|2G(xm, x̄m, P ;λ) = 0

with real analytic coefficients and, therefore, is real analytic near xm = 0.
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From now on we write x instead of xm =
√
z − zm. Differentiating the

expansion

G(x, x̄, P ;λ) = a0(P, λ) + a1(P, λ)x + a2(P, λ)x̄ + a3(P, λ)xx̄ + . . . (8.51)

with respect to zm, z and z̄, one gets the asymptotics

Ġ(z, z̄, Q;λ) = −a1(Q, λ)
2x

+ O(1) , (8.52)

Ġz̄(z, z̄, Q;λ) =
ȧ2(Q, λ)

2x̄
− a3(Q, λ)

4xx̄
+ O(1) , (8.53)

Gz(z, z̄, P ;λ) =
a1(P, λ)

2x
+ O(1) . (8.54)

Substituting (8.52), (8.53) and (8.54) into (8.50), we get the relation

Ġ(P,Q, λ) = 2πa1(P, λ)a1(Q, λ) .

On the other hand, calculation of the right hand side of formula (8.47) via
(8.54) leads to the same result. %&

Now we give a variation formula for an eigenvalue of the Laplacian on a
flat surface with trivial holonomy.

Proposition 5. Let λ be an eigenvalue of Δ (for simplicity we assume it to
have multiplicity one) and let φ be the corresponding normalized eigenfunction.
Then

∂λ

∂ζk
= 2i

∫

sk

(
(∂φ)2

w
+

1
4
λφ2w̄

)
, (8.55)

where k = 1, . . . , 2g + M − 1.

Proof. For brevity we give the proof only for the case k = g + 1, . . . , 2g. One
has

∫∫

L̂

φφ̇ =
1
λ

∫∫

X̂
Δφ φ̇ =

1
λ

{
2i
∫

∂X̂
(φz̄φ̇dz̄ + φφ̇z dz) +

∫∫

X̂
φ(λφ)·

}
=

1
λ

{
2i
∫

aβ

(φz̄φz dz̄ + φφzz dz) + λ̇ + λ

∫∫

X̂
φφ̇

}
.

This implies (8.55) after integration by parts (one has to make use of the
relation d(φφz) = φ2

zdz + φφzzdz + φz̄φzdz̄ + 1
4λφ

2dz̄). %&

Variation of the determinant of the Laplacian. For simplicity we consider
only flat surfaces with trivial holonomy having 2g−2 conical points with con-
ical angles 4π. The proof of the following proposition can be found in [KK09].
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Proposition 6. Let (X , w) ∈ Hg(1, . . . , 1). Introduce the notation

Q(X , |w|2) :=
{ detΔ|w|2

Area(X , |w|2) det�B

}
, (8.56)

where B is the matrix of b-periods of the surface X and Area(X , |w|2) denotes
the area of X in the metric |w|2.

The following variational formulas hold

∂ log Q(X , |w|2)
∂ζk

= − 1
12πi

∮

sk

SB − Sw
w

, (8.57)

where k = 1, . . . , 4g − 3; SB is the Bergman projective connection, Sw is
the projective connection given by the Schwarzian derivative

{∫ P
w, x(P )

}
;

SB −Sw is a meromorphic quadratic differential with poles of second order at
the zeroes Pm of w.

An Explicit Formula for the Determinant of the Laplacian
on a Flat Surface with Trivial Holonomy

We start with recalling the properties of the prime form E(P,Q) (see [Fay73,
Fay92], some of these properties were already used in our proof of the Troyanov
theorem above).

• The prime form E(P,Q) is an antisymmetric−1/2-differential with respect
to both P and Q

• Under tracing of Q along the cycle aα the prime-form remains invariant;
under the tracing along bα it gains the factor

exp

(
−πiBαα − 2πi

∫ Q

P

vα

)
. (8.58)

• On the diagonal Q → P the prime-form has first order zero with the
following asymptotics:

E(x(P ), x(Q))
√

dx(P )
√

dx(Q) =

(x(Q) − x(P ))
(

1− 1
12

SB(x(P ))(x(Q) − x(P ))2 + O((x(Q) − x(P ))3
)

,

(8.59)

where SB is the Bergman projective connection and x(P ) is an arbitrary
local parameter.

The next object we shall need is the vector of Riemann constants:

KP
α =

1
2

+
1
2
Bαα −

g∑

β=1,β �=α

∮

aβ

(
vβ

∫ x

P

vα

)
(8.60)

where the interior integral is taken along a path which does not intersect ∂X̂ .
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In what follows the pivotal role is played by the holomorphic multivalued
g(1− g)/2-differential on X

C(P ) =
1

W [v1, . . . , vg](P )

g∑

α1,...,αg=1

∂gΘ(KP )
∂zα1 . . . ∂zαg

vα1 . . . vαg (P ) , (8.61)

where Θ is the theta function of the Riemann surface X ,

W(P ) := det1≤α,β≤g||v(α−1)
β (P )|| (8.62)

is the Wronskian determinant of holomorphic differentials at the point P .
The differential C has multipliers 1 and exp{−πi(g − 1)2Bαα − 2πi(g − 1)

KP
α } along basic cycles aα and bα, respectively.
In what follows we shall often treat tensor objects like E(P,Q), C(P ), etc.

as scalar functions of one of the arguments (or both). This makes sense after
fixing the local system of coordinates, which is usually taken to be z(Q) =∫ Q

w. In particular, the expression “the value of the tensor T at the point Q
in local parameter z(Q)” denotes the value of the scalar Tw−α at the point
Q, where α is the tensor weight of T (Q).

The following proposition was proved in [KK09].

Proposition 7. Consider the highest stratum Hg(1, . . . , 1) of the space Hg
containing Abelian differentials w with simple zeros.

Let us choose the fundamental polygon X̂ such that AP ((w)) + 2KP = 0,
where AP is the Abel map with the initial point P . Consider the following
expression

τ(X , w) = F2/3

2g−2∏

m,l=1 m<l

[E(Qm, Ql)]1/6 , (8.63)

where the quantity

F := [w(P )]
g−1
2 C(P )

2g−2∏

m=1

[E(P,Qm)]
(1−g)

2 (8.64)

does not depend on P ; all prime-forms are evaluated at the zeroes Qm of

the differential w in the distinguished local parameters xm(P ) =
(∫ P

Qm
w
)1/2

.
Then

∂ log τ

∂ζk
= − 1

12πi

∮

sk

SB − Sw
w

, (8.65)

where k = 1, . . . , 4g − 3.

The following Theorem immediately follows from Propositions 6 and 7.
It can be considered as a natural generalization of the Ray–Singer formula
(8.35) to the higher genus case.
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Theorem 3. Let a pair (X , w) be a point of the space Hg(1, . . . , 1). Then the
determinant of the Laplacian Δ|w|2 is given by the following expression

detΔ|w|2 = C Area(X , |w|2) det�B |τ(X , w)|2 , (8.66)

where the constant C is independent of a point of Hg(1, . . . , 1). Here τ(X , w)
is given by (8.63).

8.6.2 Determinant of the Laplacian on an Arbitrary Polyhedral
Surface of Genus g > 1

Let b1, . . . , bN be real numbers such that bk > −1 and b1 + · · ·+ bN = 2g− 2.
Denote byMg(b1, . . . , bN ) the moduli space of pairs (X ,m), where X is a com-
pact Riemann surface of genus g > 1 and m is a flat conformal conical metric
on X having N conical points with conical angles 2π(b1 + 1), . . . , 2π(bN + 1).
The spaceMg(b1, . . . , bN ) is a (real) orbifold of (real) dimension 6g+2N −5.
Let w be a holomorphic differential with 2g − 2 simple zeroes on X . Assume
also that the set of conical points of the metric m and the set of zeros of the
differential w do not intersect.

Let P1, . . . , PN be the conical points of m and let Q1, . . . , Q2g−2 be the
zeroes of w. Let xk be a distinguished local parameter for m near Pk and yl
be a distinguished local parameter for w near Ql. Introduce the functions fk,
gl and the complex numbers fk, gl by

|w|2 = |fk(xk)|2|dxk|2 near Pk ; fk := fk(0),

m = |gl(yl)|2|dyl|2 near Ql ; gl := gl(0) .

Then from (8.25) and (8.66) and the lemma on three polyhedra from §4.4 one
obtains the relation

detΔm = CArea (X ,m)det�B |τ(X , w)|2
∏2g−2
l=1 |gl|1/6∏N
k=1 |fk|bk/6

, (8.67)

where the constant C depends only on b1, . . . , bN (and neither the differential
w nor the point (X ,m) ∈ Mg(b1, . . . , bN)) and τ(X , w) is given by (8.63).
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(Eds.), Séminaire de Probabilités XXXVII (2003)
Vol. 1833: D.-Q. Jiang, M. Qian, M.-P. Qian, Mathematical
Theory of Nonequilibrium Steady States. On the Frontier
of Probability and Dynamical Systems. IX, 280 p, 2004.
Vol. 1834: Yo. Yomdin, G. Comte, Tame Geometry with
Application in Smooth Analysis. VIII, 186 p, 2004.
Vol. 1835: O.T. Izhboldin, B. Kahn, N.A. Karpenko,
A. Vishik, Geometric Methods in the Algebraic Theory of
Quadratic Forms. Summer School, Lens, 2000. Editor: J.-
P. Tignol (2004)
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C. Stricker (Eds.), Séminaire de Probabilités XLI (2008)
Vol. 1935: A. Unterberger, Alternative Pseudodifferential
Analysis (2008)
Vol. 1936: P. Magal, S. Ruan (Eds.), Structured Population
Models in Biology and Epidemiology (2008)
Vol. 1937: G. Capriz, P. Giovine, P.M. Mariano (Eds.),
Mathematical Models of Granular Matter (2008)
Vol. 1938: D. Auroux, F. Catanese, M. Manetti, P. Seidel,
B. Siebert, I. Smith, G. Tian, Symplectic 4-Manifolds
and Algebraic Surfaces. Cetraro, Italy 2003. Editors:
F. Catanese, G. Tian (2008)
Vol. 1939: D. Boffi, F. Brezzi, L. Demkowicz, R.G. Durán,
R.S. Falk, M. Fortin, Mixed Finite Elements, Compati-
bility Conditions, and Applications. Cetraro, Italy 2006.
Editors: D. Boffi, L. Gastaldi (2008)
Vol. 1940: J. Banasiak, V. Capasso, M.A.J. Chaplain,
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