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Abstract. We construct a flat holomorphic line bundle over a connected component of the Hurwitz
space of branched coverings of the Riemann sphere P1. A flat holomorphic connection defining the
bundle is described in terms of the invariant Wirtinger projective connection on the branched covering
corresponding to a given meromorphic function on a Riemann surface of genus g. In genera 0 and 1
we construct a nowhere vanishing holomorphic horizontal section of this bundle (the ‘Wirtinger
tau-function’). In higher genus we compute the modulus square of the Wirtinger tau-function. In
particular one gets formulas for the isomonodromic tau-functions of semisimple Frobenius manifolds
connected with the Hurwitz spaces Hg,N(1, . . . , 1).
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1. Introduction

Holomorphic line bundles over moduli spaces of Riemann surfaces were stud-
ied by many researchers during last 20 years (see, e.g., Fay’s survey [3]). In the
present paper we consider (flat) holomorphic line bundles over Hurwitz spaces
(the spaces of meromorphic functions on Riemann surfaces or, what is the same,
the spaces of branched coverings of the Riemann sphere P

1) and over coverings
of Hurwitz spaces. The covariant constant sections (we call them tau-functions) of
these bundles are the main object of our consideration.

Our work was inspired by a coincidence of the isomonodromic tau-function
of a class of 2 × 2 Riemann–Hilbert problems solved in [7] with the heuristic
expression which appeared in the context of the string theory and was interpreted
as the determinant of the Cauchy–Riemann operator acting in a spinor line bundle
over a hyperelliptic Riemann surface (see the survey [8]).

To illustrate our results consider, for example, the Hurwitz space Hg,N(1, . . . , 1)
consisting of N-fold coverings of genus g with only simple branch points, none of
which coincides with infinity. (In the main text we work with coverings having
branch points of arbitrary order.)

Let L be a covering from Hg,N(1, . . . , 1), we use the branch points λ1, . . . , λM
(i.e. the projections of the ramification points P1, . . . , PM of the covering L) as
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local coordinates on the space Hg,N(1, . . . , 1); according to the Riemann–Hurwitz
formula M = 2g + 2N − 2.

Let λ be the coordinate of the projection of a point P ∈ L to P
1. In a neighbor-

hood of a ramification point Pm we introduce the local coordinate xm = √λ− λm.
Besides the Hurwitz space Hg,N(1, . . . , 1), we shall use the ‘punctured’ Hur-

witz space H ′
g,N(1, . . . , 1), which is obtained from Hg,N(1, . . . , 1) by excluding

all branched coverings which have at least one vanishing theta-constant.
In the trivial bundle H ′

g,N(1, . . . , 1)× C we introduce the connection

dW = d−
M∑
m=1

Am dλm, (1.1)

where d is the external differentiation operator including both holomorphic and an-
tiholomorphic parts; connection coefficients are expressed in terms of the invariant
Wirtinger projective connection SW on the covering L as follows:

Am = − 1
12SW(xm)|xm=0, m = 1, . . . M. (1.2)

The connection coefficients Am are holomorphic with respect to λm and well-
defined for all coverings L from the ‘punctured’ Hurwitz space H ′

g,N(1, . . . , 1).
Connection (1.1) turns out to be flat; therefore, it determines a character of

the fundamental group of H ′
g,N(1, . . . , 1); this character defines a flat holomorphic

line bundle TW over H ′
g,N(1, . . . , 1). We call this bundle the ‘Wirtinger line bundle’

over Hurwitz space; its horizontal holomorphic section we call the Wirtinger tau-
function of the covering L.

In a trivial bundle U(L0)×C, where U(L0) is a small neighborhood of a given
covering L0 in Hg,N(1, . . . , 1) we can define also the flat connection dB = d −∑M

m=1 Bm dλm, where the coefficients Bm are built from the Bergmann projective
connection SB in a way similar to (1.2):

Bm = − 1
12SB(xm)|xm=0.

The covariant constant section of this line bundle in case of hyperelliptic coverings
(N = 2, g > 1) turns out to coincide (see [7] for explicit calculation) with
heuristic expression for the determinant of the Cauchy–Riemann operator acting
in the trivial line bundle over a hyperelliptic Riemann surface, which was proposed
in [8]. This section also appears as a part of isomonodromic tau-function associated
to matrix Riemann–Hilbert problems with quasi-permutation monodromies [9]. Its
(−1/2)-power coincides with isomonodromic tau-function of a Frobenius mani-
fold corresponding to the Hurwitz space Hg,N(1, . . . , 1) (see [1]). However, since
the Bergmann projective connection, in contrast to Wirtinger projective connection,
does depend on the choice of canonical basis of cycles on the covering, connec-
tion dB can not be globally continued to the whole Hurwitz space, but only to
its appropriate covering. We call the corresponding line bundle over this cover-
ing the Bergmann line bundle and its covariant constant section – the Bergmann
tau-function.
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We obtain explicit formulas for the modulus square of the Wirtinger and
Bergmann tau-functions in genus greater than 1; in genera 0 and 1 we perform the
‘holomorphic factorization’ and derive explicit formulas for the tau-functions them-
selves.

In genera 1 and 2 (as well as in genus 0) there are no vanishing theta-constants,
i.e. Hg,N(1, . . . , 1) = H ′

g,N(1, . . . , 1); therefore, the holomorphic bundle TW is the
bundle over the whole Hurwitz space Hg,N(1, . . . , 1).

To write down an explicit formula for the tau-function over the Hurwitz space
H1,N(1, . . . , 1), consider a holomorphic (not necessarily normalized) differential
v(P ) on an elliptic covering L ∈ H1,N(1, . . . , 1). Introduce the notation fm ≡
fm(0), hk ≡ hk(0), where v(P ) = fm(xm) dxm near the branch point Pm and
v(P ) = hk(ζ ) dζ near the infinity of the kth sheet; ζ = 1/λ, where λ is the coordi-
nate of the projection of a point P ∈ L to P

1. Then the Wirtinger tau-function on
H1,N(1, . . . , 1) is given by the formula

τW = {∏N
k=1 hk}1/6

{∏M
m=1 fm}1/12

. (1.3)

The analogous explicit formula can be written for coverings of genus 0.
The results in genera 0, 1 follow from the study of the properly regularized

Dirichlet integral S = 1/2π
∫
L |φλ|2, where eφ|dλ|2 is the flat metric on L obtained

by projecting down the standard metric |dz|2 on the universal covering L̃. The
derivatives of S with respect to the branch points can be expressed through the
values of the Schwarzian connection at the branch points; this reveals a close link
of S with the modulus of the tau-function. On the other hand, the integral S admits
an explicit calculation via the asymptotics of the flat metric near the branch points
and the infinities of the sheets of the covering. Moreover, it admits a ‘holomorphic
factorization’ i.e. it can be explicitly represented as the modulus square of some
holomorphic function, which allows one to compute the tau-function itself.

The same tools (except the explicit holomorphic factorization) also work in case
of higher genus, when two equivalent approaches are possible.

First, one can exploit the Schottky uniformization and introduce the Dirichlet
integral corresponding to the flat metric on L obtained by projecting of the flat
metric |dω|2 on a fundamental domain of the Schottky group. This approach leads
to the expression of the modulus square of the tau-function through the holomor-
phic function F on the Schottky space, which was introduced in [16] and can
be interpreted as the holomorphic determinant of the Cauchy–Riemann operator
acting in the trivial line bundle over L. (In the main text we denote this function
directly by det ∂̄ .)

The second approach uses the Fuchsian uniformization and the Liouville action
corresponding to the metric of constant curvature −1 on L. It gives the following
expression for the modulus square of the tau-function:

|τW |2 = e−SFuchs/6 det�

det�B

∏
β even

|![β](0 | B)|−8/(4g+2g), (1.4)
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where det� is the determinant of the Laplacian on the L; SFuchs is an appropriately
regularized Liouville action which is a real-valued function of the branch points;
B is the matrix of b-periods of the branched covering.

Existence of explicit holomorphic factorization of our expressions for |τW |2 in
genera g = 0, 1 allows to suggest that explicit formulas for τW similar to (1.3) also
exist in higher genera.

In this paper we use the technical tools developed in [17, 18]. We strongly
suspect that in our context it should be possible to avoid the extrinsic formalism of
the Dirichlet integrals and Liouville action and, at the least, it should exist a direct
way to prove the genus 1 formula (1.3).

The paper is organized as follows. In Section 2 after some preliminaries we
prove the flatness of the connections dW and dB and introduce the flat line bun-
dles over Hurwitz spaces and their coverings. In Section 2 we find explicitly the
tau-functions for genera 0 and 1. In Section 3, using the Schottky and Fuchsian
uniformizations, we give the expressions for the modulus square of tau-functions
in genus greater than 1.

2. Tau-Functions of Branched Coverings

2.1. THE HURWITZ SPACES

Let L be a compact Riemann surface of genus g represented as an N-fold branched
covering

p: L −→ P
1, (2.1)

of the Riemann sphere P
1. Let the holomorphic map p be ramified at the points

P1, P2, . . . , PM ∈ L of ramification indices r1, r2, . . . , rM respectively (the rami-
fication index is equal to the number of sheets glued at a given ramification point).
Let also λm = p(Pm), m = 1, 2, . . . ,M be the branch points. (Following [4], we
reserve the name ‘ramification points’ for the points Pm of the surface L and the
name ‘branch points’ for the points λm of the base P

1.)
We assume that none of the branch points λm coincides with the infinity and

λm �= λn for m �= n.
Recall that two branched coverings p1: L1 → P

1 and p2: L2 → P
1 are

called equivalent if there exists a biholomorphic map f : L1 → L2 such that
p2f = p1. Let H(N,M,P1) be the Hurwitz space of the equivalence classes of
N-fold branched coverings of P

1 with M branch points none of which coincides
with the infinity. This space can be equipped with natural topology (see [4]) and
is a (generally disconnected) complex manifold. Denote by U(L) the connected
component of H(N,M,P1) containing the equivalence class of the covering L.
According to the Riemann–Hurwitz formula, we have

g =
M∑
m=1

rm − 1

2
−N + 1,
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where g is the genus of the surface L.
If all the branch points of the covering L are simple (i.e. all the rm are equal to 2)

then U(L) coincides with the space Hg,N(1, . . . , 1) of meromorphic functions of
degree N on Riemann surfaces of genus g = M/2 − N + 1 with N simple poles
and M simple critical values (see [11]). The space Hg,N(1, . . . , 1) is also called the
Hurwitz space ([11]).

Following [1], introduce the set Û(L) of pairs{
L1 ∈ U(L) | a canonical basis {ai, bi}gi=1 of cycles on L1

}
. (2.2)

The space Û(L) is a covering of U(L).
The branch points λ1, . . . , λM of a covering L1 ∈ U(L) can serve as local

coordinates on the space U(L) as well as on its covering Û(L).
A branched covering L is completely determined by its branch points if in ad-

dition one fixes a representation σ of the fundamental group π1(P
1 \ {λ1, . . . , λM})

in the symmetric group SN . The element σγ ∈ SN corresponding to an element
γ ∈ π1(P

1\{λ1, . . . , λM}) describes the permutation of the sheets of the covering L
if the point λ ∈ P

1 encircles the loop γ . One gets a small neighborhood of a given
branched covering L moving the branch points in small neighborhoods of their
initial positions without changing the representation σ .

2.2. THE BERGMANN AND WIRTINGER PROJECTIVE CONNECTIONS

Choose on L a canonical basis of cycles {ai, bi}gi=1 and the corresponding basis of
holomorphic differentials vi normalized by the conditions

∮
ai
vj = δij . Let

B(P,Q) = dP dQ lnE(P,Q), (2.3)

where E(P,Q) is the prime form (see [10] or [2]), be the Bergmann kernel on the
surface L.

The invariant Wirtinger bidifferential W(P,Q) on L is defined by the equality

W(P,Q)

= B(P,Q)+ 2

4g + 2g

g∑
i,j=1

vi(P )vj (Q)
∂2

∂zi∂zj
ln

∏
β even

![β](z|B)|z=0, (2.4)

where B = ‖Bij‖gi,j=1 is the matrix of b-periods of L; β runs through the set of all
even characteristics (see [3, 15]).

In contrast to the Bergmann kernel, the invariant Wirtinger differential does not
depend on the choice of canonical basic cycles {ai, bi}.

The invariant Wirtinger bidifferential is not defined if the surface L has at least
one vanishing theta-constant. Thus, we introduce the ‘punctured’ space U′(L) ⊂
U(L) consisting of equivalence classes of branched coverings with all nonvanish-
ing theta-constants. Unless the g � 2 or g > 2 and N = 2 the ‘theta-divisor’
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Z = U(L) \U′(L) forms a subspace of codimension 1 in U(L). If g � 2 then
the set Z is empty and U′(L) = U(L); for hyperelliptic (N = 2) coverings of
genus g > 2 a vanishing theta-constant does always exist and, therefore, for such
coverings U′(L) is empty.

The Wirtinger bidifferential has the following asymptotics near diagonal:

W(P,Q) =
{

1

(x(P )− x(Q))2
+ 1

6SW(x(P ))+ o(1)

}
dx(P ) dx(Q) (2.5)

as P → Q, where x(P ) is a local coordinate on L. The quantity SW is a projective
connection on L; it is called the invariant Wirtinger projective connection. For the
Bergmann kernel we have similar asymptotics

B(P,Q) =
{

1

(x(P )− x(Q))2
+ 1

6SB(x(P ))+ o(1)

}
dx(P ) dx(Q), (2.6)

where SB is the Bergmann projective connection. The Bergmann and the invariant
Wirtinger projective connections are related as follows:

SW = SB + 12

4g + 2g

g∑
i,j=1

{
∂2

∂zi∂zj
ln

∏
βeven

![β](z|B)|z=0

}
vivj . (2.7)

As well as the Wirtinger bidifferential itself, the Wirtinger projective connection
does not depend on the choice of basic cycles on L while the Bergmann projective
connection does.

We recall that any projective connection S behaves as follows under the coordi-
nate change x = x(z):

S(z) = S(x)

(
dx

dz

)2

+ Rx,z, (2.8)

where

Rx,z ≡ {x, z} = x′′′(z)
x′(z)

− 3

2

(
x′′(z)
x′(z)

)2

(2.9)

is the Schwarzian derivative.
The following formula for the Bergmann projective connection at an arbitrary

point P ∈ L on the Riemann surface of genus g � 1 is a simple corollary of
expression (2.3) for the Bergmann kernel [2]:

SB(x(P )) = −2
T

H
+

{∫ P

H, x(P )

}
, (2.10)

where

H =
∑

!∗zi (0)fi; T =
∑
i,j,k

!∗zi zj zk (0)fifjfk;
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!∗ is the theta-function with an arbitrary nonsingular odd half-integer characteris-
tic; fi ≡ vi(P )/dx(P ).

2.3. VARIATIONAL FORMULAS

Denote by xm = (λ−λm)1/rm the natural coordinate of a point P in a neighborhood
of the ramification point Pm, where λ = p(P ).

Recall the Rauch formula (see, e.g., [3], formula (3.21) or the classical pa-
per [13]), which describes the variation of the matrix B = ‖bij‖ of b-periods
under the variation of conformal structure corresponding to a Beltrami differential
µ ∈ L∞:

δµbij =
∫

L

µvivj . (2.11)

We shall need also the analogous formula for the variation of the Bergmann
kernel

δµB(P,Q) = 1

2πi

∫
L

µ(·)B(·, P )B(·,Q) (2.12)

(see [3], p. 57).
Introduce the following Beltrami differential

µm = − 1

2εrm

( |xm|
xm

)rm−2

1{|xm|�ε}
dx̄m
dxm

(2.13)

with sufficiently small ε > 0 (where 1{|xm|�ε} is the function equal to 1 inside the
disc of radius ε centered at Pm and vanishing outside the disc); if rm = 2 this
Beltrami differential corresponds to the so-called Schiffer variation).

Setting µ = µm in (2.11) and using the Cauchy formula, we get

δµmbij =
2πi

rm (rm − 2)!
(

d

dxm

)rm−2{
vi(xm)vj (xm)

(dxm)2

}∣∣∣∣
xm=0

. (2.14)

Observe now that the r.h s. of formula (2.14) coincides with the known expression
for the derivative of the b-period with respect to the branch point λm:

∂bij

∂λm
= 2πires|λ=λm

N∑
k=1

1

dλ
vi(λ

(k))vj (λ
(k)), (2.15)

where λ(k) denotes the point on the kth sheet of the covering L which projects to
the point λ ∈ P

1. (Only those sheets which are glued together at the point Pm give
a nontrivial contribution to the summation at the right-hand side of (2.15).) Thus,
we have the following relation for variations of b-periods:

∂λmbij = δµmbij . (2.16)
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This relation can be generalized for an arbitrary function of moduli. Let Z: Tg →
Hg be the standard holomorphic map from the Teichmüller space Tg to Siegel’s
generalized upper half-plane. (The Z maps the conformal equivalence class of a
marked Riemann surface to the set of b-periods of normalized holomorphic dif-
ferentials on this surface.) It is well-known that the rank of the map Z is 3g − 3
at any point of Tg \ T ′g, where T ′g is the (2g − 1)-subvariety of Tg corresponding
to hyperelliptic surfaces. Thus, one can always choose some 3g − 3 b-periods as
local coordinates in a small neighborhood of any point of Tg \ T ′g. Using these
coordinates, we get

δf

δµm

=
∑
i,j

∂f

∂bij
δµmbij =

∂f

∂λm
, (2.17)

for any differentiable function f on Tg under the condition that the variation in the
l.h.s. of (2.17) is taken at a point of Tg \ T ′g (i.e. at a nonhyperelliptic surface).

Formula (2.15) is well-known in the case of the simple branch point λm
(i.e. for rm = 2, see, e.g., [12]). Since we did not find an appropriate reference
for the general case, in what follows we briefly outline the proof:

Writing the basic differential vi in a neighborhood of the ramification point Pm
as

vi(xm) =
(
C0 + C1xm + · · · + Crm−1x

rm−1
m + O(|xm|rm)

)
dxm

and differentiating this expression with respect to λm, we get the asymptotics

∂

∂λm
vi(xm) =

{
C0

(
1− 1

rm

)
1

x
rm
m

+ C1

(
1− 2

rm

)
1

x
rm−1
m

+ · · · +

+ Crm−2

(
1− rm − 1

rm

)
1

x2
m

+ O(1)

}
dxm. (2.18)

If n �= m then in a neighborhood of the ramification point Pn we have the asymp-
totics

∂

∂λm
vi(xn) = O(1) dxn.

Therefore, the meromorphic differential ∂λmvi has the only pole at the point Pm and
its principal part at Pm is given by (2.18). Observe that all the a-periods of ∂λmvi
are equal to zero. Thus we can reconstruct ∂λmvi via the first rm − 2 derivatives of
the Bergmann kernel:

∂

∂λm
vi(P ) = 1

rm(rm − 2)!
(

d

dxm

)rm−2{
B(P, xm)vi(xm)

(dxm)2

}∣∣∣∣
xm=0

. (2.19)

To get (2.15) it is enough to integrate (2.19) over the b-cycle bj (whose projection
on P

1 is independent of the branch points) and use the formula∫
bj

B(·, xm) = 2πivj (xm).
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One may apply the same arguments to get the following formula for the deriva-
tive of the Bergmann kernel with respect to the branch point λm:

∂

∂λm
B(P,Q) = −res|λ=λm

1

dλ

N∑
k=1

B(P, λ(k))B(Q, λ(k)). (2.20)

This formula also follows from (2.12) and (2.17).
We shall need also another expression for the derivative of the Bergmann kernel:

∂

∂λm
B(P,Q) = res|λ=λm

{
1

dλ

∑
j �=k

B(P, λ(j))B(Q, λ(k))

}
. (2.21)

To prove it we note that the sum
∑

j B(P, λ
(j)) over all the sheets of covering L

gives the Bergmann kernel on the sphere P
1

dλ dµ(P )

(λ− µ(P ))2

(here µ(P ) = p(P )), therefore, we have

(dλ)2 dµ(P ) dµ(Q)

(λ− µ(P ))2(λ− µ(Q))2

=
∑
j

B(P, λ(j))
∑
k

B(Q, λ(k))

=
∑
j

B(P, λ(j))B(Q, λ(j))+
∑
j �=k

B(P, λ(j))B(Q, λ(k)).

Now taking the residue at λ = λm and using (2.20), we get (2.21).

2.4. THE BERGMANN AND WIRTINGER PROJECTIVE CONNECTIONS AT THE

BRANCH POINTS

Here we prove a property of the Bergmann projective connection on a branched
covering which plays a crucial role in all our forthcoming constructions.

Introduce the following notation:

Bm = − 1

6(rm − 2)! rm
(

d

dxm

)rm−2

SB(xm)|xm=0, m = 1, 2, . . . ,M, (2.22)

where SB(xm) is the Bergmann projective connection corresponding to the local
parameter xm = (λ − λm)

1/rm near the ramification point Pm. (The factor −1/6
in (2.22) seems to be of no importance, its appearance will be explained later on.)

If we deform covering (2.1) moving the branch points in small neighborhoods of
their initial positions and preserving the permutations corresponding to the branch
points then the quantity Bm becomes a function of (λ1, . . . , λM).
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THEOREM 1. For any m,n = 1, . . . ,M the following equations hold

∂Bm

∂λn
= ∂Bn

∂λm
. (2.23)

Proof. We start with the following lemma.

LEMMA 1. The function Bm can be expressed via the Bergmann kernel as

Bm = 2res|λ=λm
{

1

dλ

N∑
k,j=1;j �=k

B(λ(j), λ(k))

}
, (2.24)

where λ(j) is the point of the j th sheet of covering (2.1) such that p(λ(j)) = λ.

Let H(·, ·) be the nonsingular part of the Bergmann kernel, i.e.

B(P,Q) =
(

1

(x(P )− x(Q))2
+H(x(P ), x(Q))

)
dx(P ) dx(Q),

as P → Q.
To prove the lemma we observe that only those sheets which are glued together

at the point Pm give a nontrivial contribution to the summation in (2.24). Now we
may rewrite the right hand side of (2.24) as

1

3
res|λ=λm

rm∑
j,k=1, j �=k

H(γ jxm, γ
kxm)γ

j+k
(

dxm
dλ

)2

dλ,

where γ = e2πi/rm is the root of unity. In terms of coefficients of the Taylor series
of H(xm, ym) at the point Pm:

H(xm, ym) =
∞∑
s=0

s∑
p=0

H(p,s−p)(0, 0)

p!(s − p)! xpmy
s−p
m

this expression looks as follows:

1

3r2
m

rm−2∑
p=0

H(p,rm−2−p)(0, 0)

p!(rm − 2− p)!
rm∑

j,k=1,j<k

γ (p+1)k+(rm−p−1)j .

Summing up the geometrical progression, we get (2.24).
Using (2.24) and (2.21) we conclude that

∂Bm

∂λn
= 2

{
∂

∂λn
res|λm

1

dλ

∑
j �=k

B(λ(j), λ(k))

}

= 2res|λ=λmres|µ=λn
{

1

dλ

1

dµ

∑
j �=k

∑
j ′ �=k′

B(µ(j ′), λ(j))B(µ(k′), λ(k))

}
.

(2.25)
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To finish the proof we note that the last expression is symmetric with respect to m

and n. ✷
The analogous statement is also true for the derivatives of the Wirtinger projec-

tive connection. Namely, set

Am = − 1

6(rm − 2)! rm
(

d

dxm

)rm−2

SW(xm)|xm=0, m = 1, 2, . . . ,M, (2.26)

where SW(xm) is the Wirtinger projective connection corresponding to the local
parameter xm near the ramification point Pm. The following statement is an easy
corollary of Theorem 1.

THEOREM 2. For any m,n = 1, . . . ,M the following equations hold
∂Am

∂λn
= ∂An

∂λm
. (2.27)

Proof. A simple calculation shows that the one-form

V =
M∑
m=1

(Am −Bm) dλm

is a total differential:

V = − 4

4g + 2g
d ln

∏
βeven

![β](0 | B). (2.28)

To prove (2.28) it is sufficient to use the heat equation for theta-function

∂![β](z | B)
∂bjk

= 1

4πi

∂2![β](z | B)

∂zj∂zk
, (2.29)

the formula (2.14) for the derivative of the b-period with respect to the branch point
and the link (2.7) between the Wirtinger and Bergmann projective connections. ✷

2.5. THE WIRTINGER AND BERGMANN TAU-FUNCTIONS OF BRANCHED

COVERINGS

2.5.1. The Wirtinger Tau-function

We recall that U′(L) denotes the set of branched coverings from the connected
component U(L) � L of the Hurwitz space H(N,M,P1) for which none of the
theta-constants vanishes. Introduce the connection

dW = d−
M∑
m=1

Am dλm, (2.30)

acting in the trivial bundle U′(L) × C, where d is the external differentiation
(having both ‘holomorphic’ and ‘antiholomorphic’ components); the connection
coefficients Am are defined by (2.26).
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Remark 1. If we choose another global holomorphic coordinate λ̃ on P, λ =
(aλ̃+ b)/(cλ̃+ d), where ad − bc = 1, then the connection dW turns into a gauge
equivalent connection. Consider, for example, the case of branched coverings with
simple branch points (all the rm are equal to 2). Let λ̃m be the new coordinates of
the branch points,

λm = aλ̃m + b

cλ̃m + d
; (2.31)

then the gauge transformation of connection dW in local coordinates looks as fol-
lows

dW �−→ G−1 dWG, (2.32)

where

G =
M∏
m=1

(cλ̃m + d)−1/4. (2.33)

Theorem 2 implies the following statement.

THEOREM 3. The connection dW , defined in the trivial line bundle over U′(L)

in terms of the Wirtinger projective connection by formulas (2.30), (2.26), is flat.

The flat connection dW determines a character of the fundamental group of
U′(L), i.e. the representation

ρ: π1
(
U′(L)

)→ C
∗. (2.34)

Denote by E the universal covering of U′(L); then the group π1(U
′(L)) acts

on the direct product E × C as follows:

g(e, z) = (ge, ρ(g)z),

where e ∈ E , z ∈ C, g ∈ π1(U
′(L)). The factor manifold E × C/π1(U

′(L))

has the structure of a holomorphic line bundle over U′(L); we denote this bundle
by TW .

DEFINITION 1. The flat holomorphic line bundle TW equipped with the flat
connection dW is called the Wirtinger line bundle over the punctured Hurwitz space
U′(L). The (unique up to a multiplicative constant) horizontal holomorphic section
of the bundle TW is called the Wirtinger τ -function of the covering L and denoted
by τW .

Taking into account the form (2.32), (2.33) of the gauge transformation of
connection dW under conformal transformations on the base λ-plane, we see that
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the Wirtinger tau-function τW of a branched covering with simple branch points
transforms as follows under conformal transformation (2.31):

τW �−→
M∏
m=1

(cλ̃m + d)−1/4τW . (2.35)

One can easily derive the analogous formula in the general case of an arbitrary
covering.

We notice that

• In genera 0, 1 and 2 the ‘theta-divisor’ Z = U(L) \U′(L) is empty. There-
fore, in this case the bundle TW is a bundle over the whole connected compo-
nent U(L) of the Hurwitz space H(N,M,P1).

• Hyperelliptic coverings (N = 2) fall within this framework only in genera
g = 0, 1, 2 since for genus g > 2 one of the theta-constants always vanishes
for hyperelliptic curves [10].

• In the case of simple branch points the space U(L) is nothing but the Hurwitz
space Hg,N(1, . . . , 1) from ([1, 11]).

2.5.2. The Bergmann Tau-function

Consider now the covering Û(L) (the set of pairs (2.2)) of the space U(L). Re-
peating the construction of the previous subsection for the flat connection

dB = d−
M∑
m=1

Bm dλm, (2.36)

in the trivial line bundle Û(L) × C, we get a flat holomorphic line bundle TB
over Û(L).

(Here the coefficients Bm are defined by formula (2.22), the flatness of connec-
tion (2.36) follows from Theorem 1.)

DEFINITION 2. The flat holomorphic line bundle TB equipped with the flat
connection dB is called the Bergmann line bundle over the covering Û(L) of the
connected component U(L) of the Hurwitz space H(N,M,P1). The (unique up
to a multiplicative constant) horizontal holomorphic section of the bundle TB is
called the Bergmann τ -function of the covering L and denoted by τB .

According to the link (2.7) between Wirtinger and Bergmann projective con-
nections, the corresponding tau-functions are related as follows:

τW = τB

{ ∏
β even

![β](0|B)
}−1/(4g−1+2g−2)

. (2.37)

In contrast to the Wirtinger tau-function, the Bergmann tau-function does depend
upon the choice of canonical basis of cycles on L.
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Consider the case of hyperelliptic (N = 2) coverings. As a by-product of
computation of isomonodromic tau-functions for Riemann–Hilbert problems with
quasi-permutation monodromies (see [7]), it was found the following expression
for the Bergmann tau-function τB on the spaces Ĥg,2(1, 1):

τB = det A
2g+2∏

m,n=1; m<n
(λm − λn)

1/4, (2.38)

where A is the matrix of a-periods of nonnormalized holomorphic differentials on
L:Aαβ =

∮
aα
λβ−1dλ/ν, with ν2 =∏2g+2

m=1 (λ− λm).
Expression (2.38) coincides with the empirical formula for the determinant of

∂̄-operator, acting in the trivial line bundle over L, derived in [8]. Due to the term
det A, the expression (2.38) is explicitly dependent on the choice of canonical basis
of cycles on L.

On the other hand, the Wirtinger tau-function, which is independent of the
choice of canonical basis of cycles, is defined on hyperelliptic curves only if g � 2.
Consider the case g = 2 (postponing the cases g = 0, 1 to the next section).

Recall the classical Thomae formulas, which express the theta-constants of hy-
perelliptic curves in terms of branch points. Namely, consider an arbitrary partition
of the set of branch points {λ1, . . . , λ2g+2} into two subsets: T and T , where the
subset T (and also T ) contains g + 1 branch points. To each such partition we can
associate an even vector of half-integer characteristics [η′T , η′′T ] such that

Bη′T + η′′T =
∑
λm∈T

U(λm)−K, (2.39)

where U(P ) is the Abel map, K is the vector of Riemann constants. The number of
even characteristics obtained in this way is given by 1

2C
g+1
2g+2. If we denote the theta-

function with characteristics [η′T , η′′T ] by θ[βT ], the Thomae formula (see [10])
states that related theta-constant can be computed as follows:

!4[βT ](0) = ±(det A)2
∏

λm,λn∈T
(λm − λn)

∏
λm,λn∈T

(λm − λn). (2.40)

In genus 2 we have 1
2 (4

2 + 22) = 10 even characteristics in total; this number
coincides with the number 1

2C
3
6 of nonvanishing even characteristics for which

the Thomae formulas take place. Substitution of Thomae formulas (2.40) and ex-
pression (2.38) for τB into (2.37) gives the following formula for the Wirtinger
tau-function of a hyperelliptic covering of genus 2:

τW =
6∏

m,n=1,m<n

(λm − λn)
1/20. (2.41)

The independence of the Wirtinger tau-function of the choice of canonical basis of
cycles on L is manifest here.
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Remark 2. For higher genus (g > 2) two-fold coverings our definition of
Wirtinger tau-function does not work, since some of theta-constants always vanish.
However, we can slightly modify formula (2.37), averaging only over the set of
nonsingular even characteristics. This leads to the following definition

τ ∗W = τB

{∏
T

![βT ](0|B)
}−4/Cg+1

2g+2

. (2.42)

Since the set of all characteristics βT is invariant with respect to any change of
canonical basis of cycles, function τ ∗W does not depend on the choice of this basis.
Substitution of expression (2.38) and Thomae formulas (2.40) into (2.42) leads to
the following result:

τ ∗W =
2g+2∏

m,n=1, m�=n
(λm − λn)

1/4(2g+1). (2.43)

The main goal of the present paper is the calculation of the Wirtinger and
Bergmann tau-functions of an arbitrary covering L. In Section 3 we explicitly
calculate them for coverings of genera 0 and 1. For arbitrary coverings of higher
genus we are able to calculate only the modulus square of the tau-function (see
Section 4).

Remark 3. The Bergmann tau-function is closely related to some classes of
Frobenius manifolds (see [1]). Let φ be a primary differential (see [1], Theo-
rem 5.1) defining the structure of Frobenius manifold Mφ on the covering
Ĥg,N(1, . . . , 1). The rotation coefficients βmn of the corresponding Darboux–
Egoroff metric are independent of φ and can be expressed through the Bergmann
kernel on the covering L:

βmn = 1

2

B(P,Q)

dxm(P ) dxn(Q)

∣∣∣∣
P=Pm, Q=Pn

.

A simple calculation shows that

Hn = 1

2

∑
m�=n

β2
mn(λn − λm) = − 1

2Bn, (2.44)

where Hn is the isomonodromic quadratic Hamiltonian from [1]. Relation (2.44)
follows from Equation (2.25) and the properties of the vector fields

∑
m ∂λm and∑

m λm∂λm on the Frobenius manifold Mφ .
Thus the Bergmann tau-function is related as follows to the isomonodromic

tau-function from [1]: τB = τ−2
I , where τI is the isomonodromic tau-function

of the Frobenius manifold Mφ . This enables us to answer the question from [14]
concerning the relations between our formulas for the Bergmann tau-function and
the G-functions of Frobenius manifolds considered in [14]. The details will appear
elsewhere.
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3. Rational and Elliptic Cases

If g = 0 the branched covering L can be biholomorphically mapped to the Rie-
mann sphere P

1. Let z be the natural coordinate on P
1 \∞. The projective connec-

tion SB(xm) reduces to the Schwarzian derivative

SB(xm) = Rz,xm = {z(xm), xm}.
Therefore

Bm = −1

6rm (rm − 2)!
(

d

dxm

)rm−2

Rz,xm|xm=0. (3.1)

If g = 1 the branched covering L can be biholomorphically mapped to the torus
with periods 1 and µ; in genus 1 there is only one theta-function with odd character-

istic which is the odd Jacobi theta-function θ1(z|µ) = θ
[

1/2
1/2

]
(z|µ). Using (2.10)

and the heat equation ∂2
z θ1 = 4πi ∂µθ1, we get

SB(xm) = −8πi
∂ ln θ1

′

∂µ
v2(xm)+ Rz,xm,

where θ ′1 ≡ ∂θ1/∂z|z=0, v = v(xm) dxm and z = ∫ P
v. Now the variational

formula (2.14) implies that

Bm = 2

3

∂ ln θ1
′

∂λm
− 1

6rm (rm − 2)!
(

d

dxm

)rm−2

Rz,xm|xm=0. (3.2)

Our way of calculating of the tau-functions τW and τB is rather indirect. Namely,
we shall first compute the module of the tau-function. Since the first term in (3.2)
can be immediately integrated, in both cases g = 0 and g = 1 one needs to find a
real-valued potential S(λ1, . . . , λn) satisfying

∂S

∂λm
= 1

(rm − 2)! rm
(

d

dxm

)rm−2

Rz,xm|xm=0, (3.3)

where z is the natural coordinate on the universal covering of L (i.e. on the complex
plane for g = 1 and the Riemann sphere for g = 0).

The solution of Equations (3.3) is given by Theorem 4 below. The function S

turns out to coinside with the properly regularized Dirichlet integral

1

2π

∫
L

|φλ|2, (3.4)

where eφ|dλ|2 is the flat metric on L obtained by projecting the standard metric
|dz|2 from the universal covering. (In case g = 0, when the universal covering is
the Riemann sphere, the metric |dz|2 is singular.)
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The Dirichlet integral (3.4) can be explicitly represented as the modulus square
of holomorphic function of variables λ1, . . . , λM . The procedure of holomorphic
factorization gives us the value of the tau-function itself.

The next two subsections are devoted to the calculation of the function S.

3.1. THE FLAT METRIC ON RIEMANN SURFACES OF GENUS 0 AND 1

The asymptotics of the flat metric near the branch points. Compact Riemann sur-
faces L of genus 1 and 0 have the universal coverings L̃ = C and L̃ = P

1

respectively. Projecting from the universal covering onto L the metric |dz|2, we
obtain the metric of the Gaussian curvature 0 on L. (In case g = 0 the obtained
metric has singularity at the image of the infinity of P

1). Let J : L̃ → L be the
uniformization map; denote its inverse by U = J−1. Denote by x a local parameter
on L. The projection of the metric |dz|2 on L looks as follows:

eφ(x,x̄)|dx|2 = |Ux(x)|2|dx|2; (3.5)

where the function φ satisfies the Laplace equation

φxx̄ = 0. (3.6)

In the case g = 1 the map P �→ U(P ) may be defined by

U(P ) =
∫ P

v

with any holomorphic differential v on L (not necessarily normalized).
In the case g = 0 we choose one sheet of the covering L (we shall call this

sheet the first one) and require that U(∞(1)) = ∞, where∞(1) is the infinity of the
first sheet.

Choose any sheet of the covering L (this will be a copy of the Riemann sphere
P

1 with appropriate cuts between the branch points; we recall that it is assumed
that the infinities of all the sheets are not the ramification points) and cut out small
neighborhoods of all the branch points and a neighborhood of the infinity. In the
remaining domain we can use λ as global coordinate. Let φext(λ, λ̄) be the function
from (3.5) corresponding to the coordinate x = λ and φint(xm, x̄m) be the function
from (3.5) corresponding to the coordinate x = xm.

LEMMA 2. The derivative of the function φext has the following asymptotics near
the branch points and the infinities of the sheets:

(1) |φext
λ (λ, λ)|2 = ((1/rm)− 1)2|λ− λm|−2 + O(|λ− λm|−2+1/rm) as λ→ λm,

(2) |φext
λ (λ, λ)|2 = 4|λ|−2 + O(|λ|−3) as λ→∞.

(3) In the case g = 0 on the first sheet the last asymptotics is replaced by

|φext
λ (λ, λ)|2 = O(|λ|−6)

as λ→∞.
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Proof. In a small punctured neighborhood of Pm on the chosen sheet we have

eφ
int(xm,x̄m)|dxm|2 = eφ

ext(λ,λ̄)|dλ|2. (3.7)

This gives the equality

eφ
ext(λ,λ̄) = 1

r2
m

eφ
int(xm,x̄m)|λ− λm|2/rm−2

which implies the first asymptotics.
In a neighborhood of the infinity of the chosen sheet we may introduce the

coordinate ζ = 1/λ. Denote by φ∞(ζ, ζ̄ ) the function φ from (3.5) corresponding
to the coordinate w = ζ . Now the second asymptotics follows from the equality

eφ
ext(λ,λ̄) = eφ

∞(ζ,ζ̄ )|λ|−4. (3.8)

In the case g = 0 near the infinity of the first sheet we have

U(λ) = c1λ+ c0 + c−1
1

λ
+ · · ·

with c1 �= 0. So at the infinity of the first sheet there is the asymptotics

φext
λ (λ, λ̄) = Uλλ

Uλ

= O(|λ|−3). ✷
The Schwarzian connection in terms of the flat metric. Let x be some local coor-

dinate on L. Set z = U(x); here z is a point of the universal covering
(C or P

1). The system of Schwarzian derivatives Rz,x (each derivative corresponds
to its own local chart) forms a projective connection on the surface L. In accor-
dance with [5], we call it the Schwarzian connection.

LEMMA 3. (1) The Schwarzian connection can be expressed as follows in terms
of the function φ from (3.5):

Rz,x = φxx − 1
2φ

2
x . (3.9)

(2) In a neighborhood of a branch point Pm there is the following relation be-
tween the values of Schwarzian connection computed with respect to coordinates λ
and xm:

Rz,λ = 1

r2
m

(λ− λm)
2/rm−2Rz,xm +

(
1

2
− 1

2r2
m

)
(λ− λm)

−2. (3.10)

(3) Let ζ be the coordinate in a neighborhood of the infinity of any sheet of
covering (2.1) (except the first one in the case g = 0), ζ = 1/λ. Then

Rz,λ = Rz,ζ

λ4
= O(|λ|−4). (3.11)
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Proof. The second and the third statements are just the rule of transformation
of the Schwarzian derivative under the coordinate change. The formula (3.9) is
well-known and can be verified by a straightforward calculation. ✷

The derivative of the metric with respect to a branch point. In this item we
set φ(λ, λ̄) = φext(λ, λ̄). The following lemma describes the dependence of the
function φ on positions of the branch points of the covering L.

LEMMA 4. Let g = 0, 1. The derivative of the function φ with respect to λ is
related to its derivative with respect to a branch point λm as follows:

∂φ

∂λm
+ Fm

∂φ

∂λ
+ ∂Fm

∂λ
= 0, (3.12)

where

Fm = −Uλm

Uλ

. (3.13)

Proof. We have φ = lnUλ + lnUλ; φλ = Uλλ/Uλ, φλm = Uλλm/Uλ and

Uλλm

Uλ

= Uλm

Uλ

Uλλ

Uλ

+
(
Uλm

Uλ

)
λ

.

(We used the fact that the map U depends on the branch points holomorphically.) ✷
LEMMA 5. Let g = 0 or g = 1 and let J be the uniformization map J :CP 1 → L
or J : C → L respectively. Denote the composition p ◦ J by R. Then

(1) The following relation holds:

Fm = ∂R

∂λm
. (3.14)

(2) In a neighborhood of the branch point λl the following asymptotics holds:

Fm = δlm + o(1), (3.15)

where δlm is the Kronecker symbol.
(3) At the infinity of each sheet (except the first sheet for g = 0) the following

asymptotics holds:

Fm(λ) = O(|λ|2). (3.16)

Proof. Writing the dependence on the branch points explicitly we have

U(λ1, . . . , λM;R(λ1, . . . , λM; z)) = z (3.17)

for any z from the universal covering (P1 for g = 0 or C for g = 1). Differentiat-
ing (3.17) with respect to λm we get (3.14).
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Let z0 = z0(λ1, . . . , λM) be a point from the universal covering such that
J (z0) = Pm. The map R is holomorphic and in a neighborhood of z0 there is
the representation

R(z) = λm + (z− z0)
rmf (z, λ1, . . . , λM) (3.18)

with some holomorphic function f (·, λ1, . . . , λM). This together with the first
statement of the lemma give (3.15).

Let now z∞ = z∞(λ1, . . . , λM) be a point from the universal covering such that
J (z∞) = ∞, where ∞ is the infinity of the chosen sheet. Then in a neighborhood
of z∞ we have

λ = R(z) = g(z;λ1, . . . , λM)(z − z∞)−1

with holomorphic g(·, λ1, . . . , λM). Using the first statement of the lemma, we
get (3.16). ✷
COROLLARY 1. Keep m fixed and define Fn(xn) ≡ Fm(λn + xrnn ). Then

Fn(0) = δnm;
(

d

dxn

)k

Fn(0) = 0, k = 1, . . . , rn − 2.

This immediately follows from formulas (3.14) and (3.18).
Formulas (3.12) and (3.15) are analogous to the Ahlfors lemma as it was for-

mulated in [17]. However, they are more elementary, since their proof does not use
Teichmüller’s theory.

3.2. THE REGULARIZED DIRICHLET INTEGRAL

We recall that the covering L has N sheets and N = ∑M
m=1(rm − 1)/2 − g + 1

due to the Riemann–Hurwitz formula. To the kth sheet Lk of the covering L there
corresponds the function φext

k : Lk → R which is smooth in any domain Gk
r of the

form Gk
ρ = {λ ∈ Lk : ∀m|λ−λm| > ρ and |λ| < 1/ρ}, where ρ > 0. Here λm are

all the branch points which belong to the kth sheet Lk of L. In the case of genus
zero the above definition of the domain Gk

ρ is valid for k = 2, . . . , N . The domain
G1
ρ in this case should be defined separately:

G1
ρ = {λ ∈ L1 \ ∞1 : ∀m|λ− λm| > ρ}.

(Here, again, λm are all the branch points from the first sheet.) We recall that in
the case g = 0 we have singled out one sheet of the covering (the first sheet in
our enumeration). The function φext

k has finite limits at the cuts (except the end-
points which are the ramification points); at the ramification points and at infinity
it possesses the asymptotics listed in Lemma 3.
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Let us introduce the regularized Dirichlet integral

1

2π

∫
L

|φλ|2 dS.

Namely, set

Qρ =
N∑
k=1

∫
Gk
ρ

|∂λφext
k |2 dS, (3.19)

where dS is the area element on C
1: dS = |dλ ∧ dλ̄|/2.

According to Lemma 3 there exist the finite limits

Sell(λ1, . . . , λM)

= 1

2π
lim
ρ→0

(
Qρ +

{
4N +

M∑
m=1

(rm − 1)2

rm

}
2π ln ρ

)
+

M∑
m=1

(1− rm) ln rm

(3.20)

in the case g = 1 and

Srat(λ1, . . . , λM)

= 1

2π
lim
ρ→0

(
Qρ +

{
4(N − 1)+

M∑
m=1

(rm − 1)2

rm

}
2π ln ρ

)
+

+
M∑
m=1

(1− rm) ln rm (3.21)

in the case g = 0; the last constant term
∑M

m=1(1 − rm) ln rm we include for
convenience.

THEOREM 4. Let S = Srat for g = 0, S = Sell for g = 1. Then for any m =
1, . . . ,M

∂S(λ1, . . . , λM)

∂λm
= 1

(rm − 2)! rm
(

d

dxm

)rm−2

Rz,xm|xm=0, (3.22)

where z is the natural coordinate on the universal covering of L (P1 for g = 0 and
C for g = 1).

Proof. We shall restrict ourselves to the case g = 1. The proofs for g = 0 and
g = 1 differ only in details concerning the infinity of the first sheet.

Let Qρ be defined by formula (3.19). We have

∂

∂λm
Qρ = i

2

rm∑
l=1

∮
|λ(l)−λ(l)m |=ρ

|∂λφ|2 dλ̄+
N∑
k=1

∫ ∫
G
(k)
ρ

∂

∂λm
|∂λφ|2 dS. (3.23)
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Here the first sum corresponds to those sheets of the covering (2.1) which are glued
together at the point Pm; the upper index (l) signifies that the integration is over a
contour lying on the lth sheet.

LEMMA 6. There is an equality

2

(rm − 2)! rm
(

d

dxm

)rm−2

Rz,xm|xm=0

= −
M∑
n=1

(
1− 1

r2
n

)
1

(rn − 1)!
(

d

dxn

)rn

Fm(λn + xn
rn)|xn=0. (3.24)

Here xn, xm are the local parameters near Pn and Pm. The summation at the right
is over all the branch points of the covering L.

Proof. Using (3.9) and the holomorphy of Rz,λ with respect to λ, we have

0 =
N∑
k=1

∮
∂Gk

ρ

Fm(2φλλ − φ2
λ) dλ

= 2
N∑
k=1

∮
|λ|=1/ρ

FmR
z,λ dλ+

+
N∑
k=1

∑
λn∈Lk

∮
|λ−λn|=ρ

Fm(2φλλ − φ2
λ) dλ. (3.25)

The asymptotics (3.11) and (3.16) imply that the first sum in (3.25) is o(1) as
ρ → 0. The second sum coincides with

M∑
n=1

∮
|xn|=ρ1/rn

Fn(xn)

[
2Rz,xn

rnx
2rn−2
n

+ 1

x
2rn
n

(
1− 1

r2
n

)]
rnx

rn−1
n dxn. (3.26)

Here we have used (3.10); the function Fn is from Corollary 1. Now using Corol-
lary 1 together with Cauchy formula and taking the limit ρ → 0 we get (3.24). ✷

The rest of the proof relies on the method proposed in [17]. Denote by H2 the
second term in (3.23). Using (3.12) and the equality Fmλ̄ = 0, we get the relation

∂

∂λm
|φλ|2 = −(Fm|φλ|2)λ − (Fmλφλ̄)λ

= −(Fm|φλ|2)λ − (Fmλφλ)λ̄ − (Fmλφλ̄)λ. (3.27)

This gives

H2 = − i

2

(
N∑
k=1

∮
∂G

(k)
ρ

Fm|φλ|2 dλ̄−
∮
∂G

(k)
ρ

Fmλφλ dλ+
∮
∂G

(k)
ρ

Fmλφλ̄ dλ̄

)
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= − i

2

∑
λj

rj∑
p=1

(∮
|λ(p)−λ(p)j |=ρ

Fm|φλ|2 dλ̄−

−
∮
|λ(p)−λ(p)j |=ρ

Fmλφλ dλ+
∮
|λ(p)−λ(p)j |=ρ

Fmλφλ̄ dλ̄

)
−

− i

2

N∑
k=1

(∮
|λ(k)|=1/ρ

Fm|φλ|2 dλ̄−
∮
|λ(k)|=1/ρ

Fmλφλ dλ+

+
∮
|λ(k)|=1/ρ

Fmλφλ̄ dλ̄

)
. (3.28)

Let

I n1 (ρ) =
rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

Fm|φλ|2 dλ̄; I n2 (ρ) =
rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

Fmλφλ dλ;

I n3 (ρ) =
rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

Fmλφλ̄ dλ̄.

We have

I n1 (ρ) = δnm

rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

|φλ|2 dλ̄+

+
∮
|xn|=ρ1/rn

[
1

(rn − 1)!F
(rn−1)
n (0)xrn−1

n + 1

rn!F
(rn)
n (0)xrnn +

+ O(|xn|rn+1)

]
×

×
( |φint

xn
|2

rnx
rn−1
n x̄

rn−1
n

+ 1− rn

r2
n

φint
xn

x̄
rn
n x

rn−1
n

+ 1− rn

r2
n

φint
x̄n

x̄
rn−1
n x

rn
n

+

+
(

1

rn
− 1

)2 1

x
rn
n x̄

rn
n

)
rnx̄

rn−1
n dx̄n

= δnm

rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

|φλ|2 dλ̄+ 2πi
(1/rn − 1)2

(rn − 1)! F(rn)
n (0)+

+ 2πi
1− rn

rn(rn − 1)!F
(rn−1)
n (0)φint

xn
(0)+ o(1)

as ρ → 0.
We get also

I n2 (ρ) =
∮
|xn|=ρ1/rn

(
1

rnxnrn−1
φint
xn
+

(
1

rn
− 1

)
1

x
rn
n

)
×
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×
(

1

(rn − 2)!F
(rn−1)
n (0)xrn−2

n +

+ 1

(rn − 1)!F
(rn)
n (0)xrn−1

n + O(|xn|rn)
)

dxn

= −2πi

(
1

rn
− 1

)
1

(rn − 1)!F
(rn)
n (0)−

− 2πi
1

rn(rn − 2)!φ
int
xn
(0)F(rn−1)

n (0)+ o(1)

and

I n3 (ρ) =
∮
|xn|=ρ1/rn

(
1

(rn − 2)!F
(rn−1)
n (0)xrn−2

n +

+ 1

(rn − 1)!F
(rn)
n (0)xrn−1

n + O(|xn|rn)
)
×

×
(

1

rnx̄
rn−1
n

φint
x̄n
+

(
1

rn
− 1

)
1

x̄
rn
n

)(
x̄n

xn

)rn−1

dx̄n

= 2πi
(1/rn − 1)

(rn − 1)! F
(rn)
n (0)+ o(1).

We note that

I n1 − I n2 + I n3 = δnm

rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

|φλ|2 dλ̄+

+ 2πi

(rn − 1)!F
(rn)
n (0)

[(
1

rn
− 1

)2

+ 2

(
1

rn
− 1

)]
+ o(1)

= δnm

rn∑
p=1

∮
|λ(p)−λ(p)n |=ρ

|φλ|2 dλ̄−

− 2πi

(rn − 1)!
(

1− 1

r2
n

)
F(rn)

n (0)+ o(1).

It is easy to verify that

N∑
k=1

(∮
|λ(k)|=1/ρ

Fm|φλ|2 dλ̄−
∮
|λ(k)|=1/ρ

Fmλφλ dλ+
∮
|λ(k)|=1/ρ

Fmλφλ̄ dλ̄

)
= o(1),

so we get

H2 = − i

2

(
rm∑
l=1

∮
|λ(l)−λ(l)m |=ρ

|φλ|2 dλ̄−

− 2πi
M∑
n=1

1

(rn − 1)!
(

1− 1

r2
n

)
F(rn)

n (0)

)
+ o(1). (3.29)
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Now Lemma 6, (3.23) and (3.29) imply that

∂

∂λm
Qρ = 2π

(rm − 2)! rm
(

d

dxm

)rm−2

Rz,xm|xm=0 + o(1). (3.30)

To prove Theorem 4 it is sufficient to observe that the term o(1) in (3.30) is uniform
with respect to parameters (λ1, . . . , λM) belonging to a compact neighborhood of
the initial point (λ0

1, . . . , λ
0
M). ✷

COROLLARY 2. The formulas for functions Sell and Srat can be rewritten as
follows:

Sell(λ1, . . . , λM) =
M∑
m=1

rm − 1

2
φint(xm, x̄m)|xm=0 −

N∑
k=1

φ∞(∞(k)), (3.31)

Srat(λ1, . . . , λM) =
M∑
m=1

rm − 1

2
φint(xm, x̄m)|xm=0 −

N∑
k=2

φ∞(∞(k)). (3.32)

Here ∞(k) is the infinity of the kth sheet of covering (2.1); φ∞(∞(k)) =
φ∞(ζ, ζ̄ )|ζ=0; ζ = 1/λ is the local parameter near ∞(k).

Proof. Using the Laplace equation (3.6), the Stokes theorem and the asymptotics
from Lemma 2, we get in the case g = 1:

Qρ =
N∑
k=1

∫ ∫
Gk
ρ

(φλφ)λ̄ − φλλ̄φ dS = 1

2i

N∑
k=1

∫
∂Gk

ρ

φλφ dλ

= 1

2i

(
M∑
m=1

∮
|xm|=ρ1/rm

{
1

rm
φint
xm
x1−rm
m +

(
1

rm
− 1

)
x−rmm

}
{φint +

+ 2(1− rm) ln|xm| − 2 ln rm}rmxrm−1
m dxm +

+
N∑
k=1

∮
|λ|=1/ρ

{
−φ∞ζ λ−2 − 2

λ

}
{φ∞ − 4 ln|λ|} dλ

)

= −π
M∑
m=1

(1− rm)φ
int(xm)|xm=0 − 2π

N∑
k=1

φ∞(∞(k))−

−
(

4N +
M∑
m=1

(rm − 1)2

rm

)
2π ln ρ − 2π

M∑
m=1

(1− rm) ln rm + o(1),

as ρ → 0. This implies (3.31).
In case g = 0 we repeat the same calculation, omitting the integrals around the

infinity of the first sheet. ✷
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3.3. FACTORIZATION OF THE DIRICHLET INTEGRAL AND THE

TAU-FUNCTIONS OF RATIONAL AND ELLIPTIC COVERINGS

Now we are in a position to calculate the Bergmann tau-function itself. For ratio-
nal coverings the Wirtinger and Bergmann tau-functions trivially coincide, in the
elliptic case the expression for the Wirtinger tau-function follows from that for the
Bergmann one.

We start with the tau-functions of elliptic coverings.

THEOREM 5. In case g = 1 the Bergmann tau-function of the covering L is
given by the following expression:

τB = [θ1
′(0 | µ)]2/3

∏N
k=1 h

1/6
k∏M

m=1 f
(rm−1)/12
m

, (3.33)

where v(P ) is the normalized Abelian differential on the torus L;
v(P ) = fm(xm) dxm as P → Pm and fm ≡ fm(0); v(P ) = hk(ζ ) dζ as P →∞(k)

and hk ≡ hk(0); µ is the b-period of the differential v(P ).
Proof. It is sufficient to observe that

φint(xm, xm) = lnU ′(xm)+ lnU ′(xm) = ln|fm(xm)|2
in a neighborhood of Pm and

φ∞(ζ, ζ ) = ln|hk(ζ )|2
in a neighborhood of ∞(k) and to make use of (3.31) and (3.2). ✷

Now Theorem 5, the link (2.37) between the Bergmann and Wirtinger tau-
functions, and the Jacobi formula θ ′1 = πθ2θ3θ4 imply the following corollary

COROLLARY 3. The Wirtinger tau-function of the elliptic covering L is given by
the formula

τW =
∏N

k=1 h
1/6
k∏M

m=1 f
(rm−1)/12
m

. (3.34)

We notice that the result (3.34) does not depend on normalization of the holomor-
phic differential v(P ): if one makes a transformation v(P ) → Cv(P ) with an ar-
bitrary constant C, this constant cancels out in (3.34) due to the Riemann–Hurwitz
formula.

For the rational case the Bergmann and Wirtinger tau-functions coincide.

THEOREM 6. In case g = 0 the tau-functions of the covering L can be calculated
by the formula

τW ≡ τB =
∏N

k=2(
dU
dζk
|ζk=0)

1/6∏M
m=1(

dU
dxm
|xm=0)(rm−1)/12

, (3.35)
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where xm is the local parameter near the branch point Pm, ζk is the local parameter
near the infinity of the kth sheet. (We recall that the map U is chosen in such a way
that U(∞(1)) = ∞.)

The proof is essentially the same.

Remark 4. The fractional powers at the right-hand sides of formulas (3.35)
and (3.34) are understood in the sense of the analytical continuation. The aris-
ing monodromies are just the monodromies generated by the flat connection dW .
It should be noted that the 12th powers of tau-functions (3.35) and (3.34) are
single-valued global holomorphic functions on the Hurwitz space U(L).

It is instructive to illustrate the formulas (3.35) and (3.33) for the simplest two-
fold coverings with two (g = 0) and four (g = 1) branch points.

3.3.1. Tau-function of a Two-fold Rational Covering

Consider the covering of P
1 with two sheets and two branch points λ1 and λ2. Then

g = 0 and

U(λ) = 1

2

(
λ+ λ1 + λ2

2
+√

(λ− λ1)(λ− λ2)

)
. (3.36)

We get

{U(x1), x1}x1=0 =
{
x2

1 + x1

√
λ1 − λ2 + x2

1 , x1
}∣∣

x1=0

=
{√

λ1 − λ2x1 + x2
1 +

x3
1

2

√
λ1 − λ2, x1

}∣∣∣∣
x1=0

= 3

λ2 − λ1

and

{U(x2), x2}|x2=0 = 3

λ1 − λ2
. (3.37)

Now direct integration of Equations (3.37) gives the following result:

τW = τB = (λ1 − λ2)
1/4 (3.38)

(up to a multiplicative constant). On the other hand, to apply the general for-
mula (3.35), we find

Ux1(0) = 1
2

√
λ1 − λ2; Ux2(0) = 1

2

√
λ2 − λ1,

U(ζ2) = 1

2

(
1

ζ2
+ λ1 + λ2

2
− 1

ζ2

√
(1− ζ2λ1)(1− ζ2λ2)

)

= λ1 + λ2

2
+ (λ1 − λ2)

2

16
ζ2 + · · · .
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Therefore, our formula (3.35) in this case also gives rise to (3.38).

3.3.2. Tau-functions of Two-fold Elliptic Coverings

Consider the two-fold covering L with four branch points:

µ2 = (λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4). (3.39)

There are two ways to compute the tau-function on the space of such coverings.
On one hand, since the elliptic curve L belongs to the hyperelliptic class, we can
apply known formula (2.38) which gives:

τB(λ1, . . . , λ4) = A
∏

m,n=1,...4; m<n
(λm − λn)

1/4, (3.40)

where A = ∮
a

dλ/µ is the a-period of the nonnormalized holomorphic differential.
On the other hand, to apply the formula (3.33) to this case, we notice that the

normalized holomorphic differential on L is equal to

v(P ) = 1

A

dλ

µ
;

the local parameters near Pn are xn = √λ− λn. Therefore,

fm = 2A−1
∏
n�=m

(λm − λn)
−1/2, hk = (−1)kA−1, k = 1, 2.

According to the Jacobi formula θ ′1 = πθ2θ3θ4; moreover, the genus 1 version of
Thomae formulas for theta-constants gives

θ4
k = ±

A2

(2πi)2
(λj1 − λj2)(λj3 − λj4),

where k = 2, 3, 4 and (j1, . . . , j4) are appropriate permutations of (1, . . . , 4).
Computing θ ′1 according to these expressions, we again get (3.40).

3.4. THE WIRTINGER TAU-FUNCTION AND ISOMONODROMIC DEFORMATIONS

In [9] it was given a solution to a class of the Riemann–Hilbert problems with
quasi-permutation monodromies in terms of Szegö kernels on branched coverings
of P

1. The isomonodromic tau-function of Jimbo and Miwa associated to these
Riemann–Hilbert problems is closely related to the tau-functions of the branched
coverings considered in this paper.

Here we briefly outline this link for the genus zero coverings L. So, let L be
biholomorphically equivalent to the Riemann sphere P

1 with global coordinate z.
Introduce the ‘prime-forms’ on the z-sphere and the λ-sphere:

E(z, z0) = z − z0√
dz
√

dz0
, E0(λ, λ0) = λ− λ0√

dλ
√

dλ0

. (3.41)
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Define a N ×N matrix-valued function I(λ, λ0) for λ belonging to a small neigh-
borhood of λ0:

Ijk(λ, λ0) = E0(λ, λ0)

E(λ(k), λ
(j)

0 )
= (λ− λ0)

√
z′(λ(k))

√
z′(λ(j)0 )

z(λ(k))− z(λ
(j)

0 )
, (3.42)

where z′ = dz/dλ. To compute the determinant of the matrix I we use the follow-
ing identity for two arbitrary sets of complex numbers z1, . . . , zN, µ1, . . . , µN :

det
N×N

{
1

zj − µk

}
=

∏
j<k(zj − zk)(µk − µj )∏

j,k(zj − µk)
. (3.43)

Using this relation, we find that

det I = (λ− λ0)
N

N∏
k=1

{zλ(λ(k))zλ(λ(k)0 )}N/2 ×

×
∏

j<k{z(λ(k))− z(λ(j))}{z(λ(j)0 )− z(λ
(k)

0 )}∏
j,k{z(λ(k))− z(λ

(j)

0 )} .

This expression is symmetric with respect to interchanging of any two sheets,
therefore, it is a single-valued function of λ and λ0. Moreover, it is nonsingular
(and equal to 1) as λ = λ0, and nonsingular as λ → ∞. Therefore, it is globally
nonsingular, thus identically equal to 1.

The function I obviously equals to the unit matrix as λ → λ0. The only
singularities of the function I in λ-plane are the branch points λm. These are reg-
ular singularities with quasi-permutation monodromy matrices with nonvanishing
entries equal to ±1.

Therefore, function I(λ), being analytically continued from a small neighbor-
hood of point λ0 to the universal covering of P

1 \ {λ1, . . . , λm}, gives a solution to
the Riemann–Hilbert problem with regular singularities at the points λm and quasi-
permutation monodromy matrices. It is nondegenerate outside of {λm}, equals I at
λ = λ0, and satisfies the equations

∂I

∂λ
=

M∑
m=1

Am

λ− λm
I,

∂I

∂λm
= − Am

λ− λm
I (3.44)

for some N × N matrices {Am} depending on {λm}. Compatibility of Equations
(3.44) implies the Schlesinger system for the functions Am({λn}). The correspond-
ing Jimbo–Miwa tau-function τJM({λm}) is defined by the equations

∂ ln τJM
∂λm

= 1
2 res|λ=λm tr(IλI

−1)2. (3.45)
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The tau-function, as well as the expression tr(IλI
−1)2, is independent of the

normalization point λ0; taking the limit λ0 → λ in this expression, we get

Ijk = zλ(λ
(j))zλ(λ

(k))

z(λ(j))− z(λ(k))
(λ0 − λ)+ O((λ− λ0)

2), Ijj = 1+ o(1)

as λ0 → λ (3.46)

and

1
2 tr

(
IλI

−1(λ)
)2 = − 1

(dλ)2

∑
j �=k

B
(
z(λ(j)), z(λ(k))

)
, (3.47)

where

B(z, z̃) = dz dz̃

(z− z̃)2

is the Bergmann kernel on P
1. Consider the behavior of expression (3.47) as

λ→ λm; suppose that the sheets glued at the ramification point Pm have numbers s
and t . Then, since dλ = 2xm dxm, we have as λ→ λm,

1
2 tr

(
IλI

−1(λ)
)2 = − 1

4(λ− λm)

zxm(λ
(s))zxm(λ

(t))

[z(λ(s))− z(λ(t))]2 + O(1)

= − 1

4(λ− λm)

(
1

[xm(λ(s))− xm(λ(t))]2 +

+ 1
6{z, xm}|xm=0

)
+ O(1)

= − 1

4(λ− λm)

(
1

4(λ− λm)
+ 1

6{z, xm}|xm=0

)
+ O(1).

Therefore, the definition of isomonodromic tau-function (3.45) gives rise to

∂ ln τJM
∂λm

= − 1
24{z, xm}|xm=0; (3.48)

thus, in genus zero we get the following relation between isomonodromic and
Wirtinger tau-functions: τJM = {τW }−1/2, where τW is given by (3.35).

4. The Case of Higher Genus

In this section we calculate the modulus square of the Bergmann and Wirtinger
tau-functions for an arbitrary covering of genus g > 1.

Let L0 be a point of Û(L). In a small neighborhood of L0 we may consider
the branch points λ1, . . . , λM as local coordinates on Û(L).
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The tau-function τB (a section of the Bergmann line bundle) can be considered
as a holomorphic function in this small neighborhood of L0. Its modulus square,
|τB |2 is the restriction of a section of the ‘real’ line bundle TB ⊗ TB .

To compute |τB |2 we are to find a real-valued potential ln|τB |2 such that

∂ ln|τB |2
∂λm

= Bm; m = 1, . . . ,M. (4.1)

If the covering L has genus g > 1 then it is biholomorphically equivalent to the
quotient space H/L, where H = {z ∈ C : �z > 0}; L is a strictly hyperbolic
Fuchsian group. Denote by πF : H → L the natural projection. The Fuchsian
projective connection on L is given by the Schwarzian derivative {z, x}, where
x is a local coordinate of a point P ∈ L, z ∈ H, πF(z) = P .

We recall the variational formula ([19], see also [3]) for the determinant of the
Laplacian on the Riemann surface L:

δµ ln

(
det�

det�B

)
= − 1

12πi

∫
L

(SB − SF)µ,

where B is the matrix of b-periods, SB is the Bergmann projective connection,
SF is the Fuchsian projective connection, µ is a Beltrami differential. Since, as
we discussed above, the derivation with respect to λm corresponds to the Beltrami
differential µm from (2.13), we conclude that

− 1

6rm, (rm − 2)!
(

d

dxm

)rm−2

(SB(xm)− {z, xm})|xm=0

= ∂

∂λm
ln

(
det�

det�B

)
. (4.2)

Remark 5. This formula explains the appearance of the factor −1/6 in Defini-
tion (2.22) of the connection coefficient Bm.

Therefore, the calculation of the modulus of the Bergmann tau-function
of the covering L reduces to the problem of finding a real-valued function
SFuchs(λ1, . . . , λM) such that

∂SFuchs

∂λm
= 1

rm(rm − 2)!
(

d

dxm

)rm−2

{z, xm}|xm=0, m = 1, . . . M. (4.3)

Another link of |τB |2 with known objects can be established if we introduce
the Schottky uniformization of the covering L. Namely, the covering L (of genus
g > 1) is biholomorphically equivalent to the quotient space

L = D/H,

where H is a (normalized) Schottky group, D ⊂ P
1 is its region of discontinuity.

Denote by πH: D → L the natural projection.
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Introduce the Schottky projective connection on L given by the Schwarzian
derivative {ω, x}, where x is a local coordinate of a point P ∈ L; ω ∈ D;
πH(ω) = P .

Due to the formula (2.17) and the results of [16] (namely, see Remark 3.5
in [16]), we have

− 1

6rm(rm − 2)!
(

d

dxm

)rm−2

(SB(xm)− {ω, xm})|xm=0 = ∂

∂λm
ln |det ∂̄|2. (4.4)

Here det ∂̄ is the holomorphic determinant of the family of ∂̄-operators (this holo-
morphic determinant can be considered as a nowhere vanishing holomorphic func-
tion on the Schottky space; see Theorem 3.4 [16] for precise definitions and an
explicit formula for |det ∂̄|2).

Therefore, the calculation of the modulus square of the Bergmann tau-function
of the covering L reduces to the integration of the following system of equations
for real-valued function SSchottky:

∂SSchottky

∂λm
= 1

rm(rm − 2)!
(

d

dxm

)rm−2

{ω, xm}|xm=0, m = 1, . . .M. (4.5)

In the following two subsections we solve, first, system (4.5) and, second, sys-
tem (4.3).

4.1. THE DIRICHLET INTEGRAL AND THE SCHOTTKY UNIFORMIZATION

4.1.1. The Schottky Uniformization and the Flat Metric on Dissected Riemann
Surface

The Schottky uniformization. We refer the reader to [18] for a brief review of
Schottky groups and the Schottky uniformization theorem.

Fix some marking of the Riemann surface L (i.e. a point x0 in L and some
system of generators α1, . . . , αg, β1, . . . , βg of the fundamental group π1(L, x0)

such that Mg

i=1α
−1
i β−1

i αiβi = 1).
The marked surface L is biholomorphically equivalent to the quotient space

D/H, where H is a normalized marked Schottky group, D ⊂ P
1 is its region of

discontinuity. (A Schottky group is said to be marked if a relation-free system of
generators L1, . . . , Lg is chosen in it. For the normalized Schottky group L1(ω) =
k1ω with 0 < |k1| < 1 and the attracting fixed point of the transformation L2 is 1.)

Choose a fundamental region D0 for H in D. This is a region in P
1 bounded by

2g disjoint Jordan curves c1, . . . , cg, c
′
1, . . . , c

′
g with c′i = −Li(ci), i = 1, . . . , g;

the curves ci and c′i are oriented as the components of ∂D0, the minus sign means
the reverse orientation.

Let πH: D → L be the natural projection. Set Ci = πH(ci).
Denote by Ldissected the dissected surface L \ ⋃g

i=1 Ci . The map πH: D0 →
Ldissected is invertible; denote the inverse map by G0.
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4.1.2. The Flat Metric on Ldissected

Let x be a local parameter on Ldissected. Define a flat metric eφ(x,x̄)|dx|2 on Ldissected

by

eφ(x,x̄)|dx|2 = |dω|2. (4.6)

Here ω ∈ D0, πH(ω) = x. Thus, to each local chart with local parameter x

there corresponds a function φ(x, x̄). We specify the function φext(λ, λ̄) of local
parameter λ by

eφ
ext(λ,λ̄)|dλ|2 = |dω|2 = |G′0(λ)|2|dλ|2. (4.7)

Here ω ∈ D, πH(ω) = P ∈ L and p(P ) = λ.
Introduce also the functions φint(xm, x̄m), m = 1, . . . ,M and φ∞(ζk, ζ̄k), k =

1, . . . , N corresponding to the local parameters xm near the ramification points
Pm and the local parameters ζk = 1/λ near the infinity of the kth sheet. In the
intersections of the local charts we have

eφ
int(xm,x̄m)|dxm|2 = eφ

ext(λ,λ̄)|dλ|2 (4.8)

and

eφ
∞(ζk,ζ̄k)|dζk|2 = eφ

ext(λ,λ̄)|dλ|2. (4.9)

Choose an element L ∈ H and consider the fundamental region D1 = L(D0).
Introduce the map G1: Ldissected → D1 and the metric eφ1(x,x)|dx|2 on Ldissected

corresponding to this new choice of fundamental region.
Since G1(x) = L(G0(x)), we have

φ1(x, x̄) = φ(x, x̄)+ ln|L′(G0(x))|2, (4.10)

[φ1(x, x̄)]x = φx(x, x̄)+ L′′(G0(x))

L′(G0(x))
G′0(x) (4.11)

and

[φ1(x, x̄)]x̄ = φx̄(x, x̄)+ L′′(G0(x))

L′(G0(x))
G′0(x). (4.12)

The following statements are complete analogs of those from Section 3.1. Lem-
mas 7 and 8 are evident, to get Lemmas 9, 10 and Corollary 4 one only needs to
change the map U :L � x �→ z ∈ L̃ to the map G0:Ldissected � x �→ ω ∈ D0 in the
proofs of corresponding statements from Section 3.1. Since the map G0, similarly
to the map U , depends on the branch points λ1, . . . , λM holomorphically, all the
arguments from Section 3.1 can be applied in the present context.

LEMMA 7. The derivative of the function φext has the following asymptotics near
the branch points and the infinities of the sheets:
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(1) |φext
λ (λ, λ)|2 = ((1/rm)− 1)2|λ− λm|−2 + O(|λ− λm|−2+1/rm) as λ→ λm,

(2) |φext
λ (λ, λ)|2 = 4|λ|−2 + O(|λ|−3) as λ→∞.

Let x be a local coordinate on L. Set Rω,x = {ω, x}, where ω ∈ D, πH(ω) = x.

LEMMA 8. (1) The Schwarzian derivative can be expressed as follows in terms
of the function φ from (4.6):

Rω,x = φxx − 1
2φ

2
x . (4.13)

(2) In a neighborhood of a branch point Pm there is the following relation
between Schwarzian derivatives computed with respect to coordinates λ and xm:

Rω,λ = 1

r2
m

(λ− λm)
2/rm−2Rω,xm +

(
1

2
− 1

2r2
m

)
(λ− λm)

−2. (4.14)

(3) Let ζ be the coordinate in a neighborhood of the infinity of any sheet of
covering L, ζ = 1/λ. Then

Rω,λ = Rω,ζ

λ4
= O(|λ|−4). (4.15)

LEMMA 9. The derivatives of the function φ with respect to λ are related to its
derivatives with respect to the branch points as follows:

∂φ

∂λm
+ Fm

∂φ

∂λ
+ ∂Fm

∂λ
= 0, (4.16)

where

Fm = −[G0]λm
[G0]λ . (4.17)

LEMMA 10. Denote the composition p ◦ πH by R. Then
(1) The following relation holds:

Fm = ∂R

∂λm
. (4.18)

(2) In a neighborhood of the point λl the following asymptotics holds:

Fm = δlm + o(1), (4.19)

where δlm is the Kronecker symbol.
(3) At the infinity of each sheet the following asymptotics holds:

Fm(λ) = O(|λ|2). (4.20)
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COROLLARY 4. Keep m fixed and define Fn(xn) ≡ Fm(λn + xrnn ). Then

Fn(0) = δnm;
(

d

dxn

)k

Fn(0) = 0, k = 1, . . . , rn − 2.

4.1.3. The Regularized Dirichlet Integral

Assume that the ramification points and the infinities of sheets do not belong to the
cuts Ci .

To the kth sheet L(k)

dissected of the dissected surface L (we should add some cuts
connecting the branch points) there corresponds the function φext

k : L(k)

dissected → R

which is smooth in any domain �k
r of the form

�k
ρ = {λ ∈ L(k)

dissected : ∀m|λ− λm| > ρ and |λ| < 1/ρ},
where ρ > 0 and λm are all the branch points from the kth sheet L(k)

dissected of
Ldissected.

The function φext
k has finite limits at the cuts (except the endpoints which are

the ramification points); at the ramification points and at the infinity it possesses
the asymptotics listed in Lemma 7.

Introduce the regularized Dirichlet integral∫
Ldissected

|φλ|2 dS.

Namely, set

Qρ =
N∑
k=1

∫
�k
ρ

|∂λφext
k |2 dS, (4.21)

where dS is the area element on C
1 : dS = |dλ ∧ dλ̄|/2.

According to Lemma 3 there exists the finite limit

reg
∫

Ldissected

|φλ|2 dS = lim
ρ→0

(
Qρ +

(
4N +

M∑
m=1

(rm − 1)2

rm

)
2π lnρ

)
. (4.22)

Now set

SSchottky(λ1, . . . , λM) = 1

2π
reg

∫
Ldissected

|φλ|2 dS +

+ i

4π

g∑
k=2

{∫
Ck

φ(λ, λ̄)
L′′k(G0(λ))

L′k(G0(λ))
G′0(λ) dλ̄−

−
∫
Ck

φ(λ, λ̄)
L′′k(G0(λ))

L′k(G0(λ))
G′0(λ) dλ+
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+
∫
Ck

ln|L′k(G0(λ)|2L
′′
k(G0(λ))

L′k(G0(λ))
G′0(λ) dλ̄

}
+

+ 2
g∑

k=2

ln|lk|2. (4.23)

Here Lk are generators of the Schottky group H, the orientation of contours Ck is
defined by the orientation of countours ck and the relations Ck = πH(ck); the value
of the function φ(λ, λ̄) at the point λ ∈ Ck is defined as the limit limµ→λ φ(µ, µ̄),
µ = πH(ω) and ω tends to the contour ck from the interior of the region D0; lk
is the left-hand lower element in the matrix representation of the transformation
Lk ∈ PSL(2,C). The summations at the right-hand side of (4.23) start from k = 2
due to the normalization condition for the group H (the terms with k = 1 are equal
to zero).

Observe that the expression at the right-hand side of (4.23) is real and does not
depend on small movings of the cuts Ck (i.e. on a specific choice of the fundamental
region D0). In particular, we can assume that the contours Ck are {λ1, . . . , λM}-
independent. (To see this one should make a simple calculation based on (4.11),
(4.12) and the Stokes theorem.) Thus all terms in this expression except the last
one are rather natural. The role of the last term will become clear later.

The main result of this section is the following theorem.

THEOREM 7. For any m = 1, . . . ,M the following equality holds

∂SSchottky(λ1, . . . , λM)

∂λm
= 1

(rm − 2)! rm
(

d

dxm

)rm−2

Rω,xm|xm=0. (4.24)

Remark 6. This result seems to be very similar to Theorem 1 from [18]. How-
ever, we would like to emphasize that in oppose to [18] we deal here with the
Dirichlet integral corresponding to a flat metric. Thus, the following proof does
not explicitly use the Teichmüller theory and, therefore, is more elementary than
the proof of an analogous result in [18].

Proof. Set

Sρ = Qρ + i

2

g∑
k=2

{∫
Ck

φ(λ, λ̄)
L′′k(G0(λ))

L′k(G0(λ))
G′0(λ) dλ̄−

−
∫
Ck

φ(λ, λ̄)
L′′k(G0(λ))

L′k(G0(λ))
G′0(λ) dλ+

+
∫
Ck

ln|L′k(G0(λ)|2L
′′
k(G0(λ))

L′k(G0(λ)
G′0(λ)) dλ̄

}
. (4.25)
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We recall that the contours Ck are assumed to be {λ1, . . . , λM}-independent.
From now on we write G(λ) and φ instead of G0(λ) and φext. Since φλλ̄ = 0, we
have |φλ|2 = (φλφ)λ̄. The Stokes theorem and the formulas (4.10), (4.11) give

Qρ = − i

2

[
M∑
n=1

rn∑
l=1

∮
|λ(l)−λn|=ρ

φλφ dλ+
N∑
k=1

∮
|λ(k)|=1/ρ

φλφ dλ

]
−

− i

2

g∑
k=2

∫
Ck

{
φλφ −

[
φλ + L′′k(G(λ))

L′k(G(λ))
G′(λ)

]
×

× [
φ + ln|L′k(G(λ))|2]} dλ. (4.26)

Here λ(k) denotes the point on the kth sheet of the covering L whose projection to
P

1 is λ.
Denote the first term in (4.26) by − i

2 [Tρ]. Substituting (4.26) into (4.25) and
using the equalities

∫
Ck

d[φ(λ, λ̄) ln|L′(G(λ))|2] = 0 and
∫
Ck

d[ln2 |L′k(G(λ))|2]
= 0, we get

Sρ = − i

2
[Tρ] − i

2

g∑
k=2

∫
Ck

φλ̄(λ, λ̄) ln|L′k(G(λ))|2 dλ̄−

− i

2

g∑
k=2

∫
Ck

φ(λ, λ̄)
L′′k(G(λ))

L′k(G(λ))
G′(λ) dλ. (4.27)

LEMMA 11. For the first term in (4.27) we have the asymptotics

− i

2

∂

∂λm
[Tρ] = 2π

(rm − 2)! rm
(

d

dxm

)rm−2

Rω,xm|xm=0 +

+ i

2

g∑
k=1

∫
Ck∪C−k

{
Fm(2φλλ − φ2

λ)+ [Fm]λφλ
}
dλ+ o(1), (4.28)

as ρ → 0. Here C−k is the contour Ck provided by the reverse orientation, the value
of the integrand at a point λ ∈ C−k is understood as the limit as µ → λ, where
µ = πH(ω), ω tends to c′k from the interior of the region D0; the function Fm is
from Lemma 9.

Proof. Using Lemma 9, we get

∂

∂λm

M∑
n=1

rn∑
l=1

∮
|λ(l)−λn|ρ

φλφ dλ

=
rm∑
l=1

∮
|λ(l)−λm|=ρ

(φ2
λ + φφλλ) dλ−
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−
M∑
n=1

rn∑
l=1

∮
|λ(l)−λn|=ρ

(Fmφλ + [Fm]λ)φλ + φ([Fm]λφλ + Fmφλλ + [Fm]λλ) dλ

= −
rm∑
l=1

∮
|λ(l)−λm|=ρ

|φλ|2 dλ̄+

+
M∑
n=1

rn∑
l=1

∮
|λ(l)−λn|=ρ

Fm|φλ|2 dλ̄+ φλ̄[Fm]λ dλ̄. (4.29)

For the integrals around the infinities we have the equality

∂

∂λm

N∑
k=1

∮
|λ(k)|=1/ρ

φλφ dλ =
N∑
k=1

∮
|λ(k)|=1/ρ

Fm|φλ|2 dλ̄+ φλ̄[Fm]λ dλ̄. (4.30)

Applying the Cauchy theorem to the (holomorphic) function [Fm]λφλ, we get

g∑
k=1

∫
Ck∪C−k

[Fm]λφλ dλ

= −
(

M∑
n=1

rn∑
l=1

∮
|λ(l)−λn|=ρ

+
N∑
k=1

∮
|λ(k)|=1/ρ

)
[Fm]λφλ dλ. (4.31)

By (4.29), (4.30) and (4.31)

− i

2

∂

∂λm
[Tρ] = i

2

rm∑
l=1

∮
|λ(l)−λm|=ρ

|φλ|2 dλ̄−

− i

2

{(
M∑
n=1

rn∑
l=1

∮
|λ(l)−λn|=ρ

+
N∑
k=1

∮
|λ(k)|=1/ρ

)
×

× (
Fm|φλ|2 dλ̄− [Fm]λφλ dλ+ [Fm]λφλ̄ dλ̄

)}+
+ i

2

g∑
k=1

∫
Ck∪C−k

[Fm]λφλ dλ. (4.32)

Denote the expression in the large braces by H2. We claim that

− i

2
H2 = − i

2

(
rm∑
l=1

∮
|λ(l)−λm|=ρ

|φλ|2 dλ̄−

− 2πi
M∑
n=1

1

(rn − 1)!
(

1− 1

r2
n

)
F(rn)

n (0)

)
+ o(1), (4.33)

where the function Fn is from Corollary 4.
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To prove this we set

I n1 (ρ) =
rn∑
p=1

∮
|λ(p)−λn|=ρ

Fm|φλ|2 dλ̄;

I n2 (ρ) =
rn∑
p=1

∮
|λ(p)−λn|=ρ

[Fm]λφλ dλ;

I n3 (ρ) =
rn∑
p=1

∮
|λ(p)−λn|=ρ

[Fm]λφλ̄ dλ̄.

By Corollary 4 we have

I n1 (ρ) = δnm

rn∑
p=1

∮
|λ(p)−λn|=ρ

|φλ|2 dλ̄+

+
∮
|xn|=ρ1/rn

[
1

(rn − 1)!F
(rn−1)
n (0)xrn−1

n + 1

rn!F
(rn)
n (0)xrnn +

+ O(|xn|rn+1

]
×

×
( |φint

xn
|2

rnx
rn−1
n x̄

rn−1
n

+ 1− rn

r2
n

φint
xn

x̄
rn
n x

rn−1
n

+ 1− rn

r2
n

φint
x̄n

x̄
rn−1
n x

rn
n

+

+
(

1

rn
− 1

)2 1

x
rn
n x̄

rn
n

)
rnx̄

rn−1
n dx̄n

= δnm

rn∑
p=1

∮
|λ(p)−λn|=ρ

|φλ|2 dλ̄+ 2πi
(1/rn − 1)2

(rn − 1)! F(rn)
n (0)+

+ 2πi
1− rn

rn(rn − 1)!F
(rn−1)
n (0)φint

xn
(0)+ o(1)

as ρ → 0.
We get also

I n2 (ρ) = −2πi

(
1

rn
− 1

)
1

(rn − 1)!F
(rn)
n (0)−

− 2πi
1

rn(rn − 2)!φ
int
xn
(0)F(rn−1)

n (0)+ o(1)

and

I n3 (ρ) = 2πi
(1/rn − 1)

(rn − 1)! F
(rn)
n (0)+ o(1).
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We note that

I n1 − I n2 + I n3 = δnm

rn∑
p=1

∮
|λ(p)−λn|=ρ

|φλ|2 dλ̄+

+ 2πi

(rn − 1)!F
(rn)
n (0)

[(
1

rn
− 1

)2

+ 2

(
1

rn
− 1

)]
+ o(1)

= δnm

rn∑
p=1

∮
|λ(p)−λn|=ρ

|φλ|2 dλ̄−

− 2πi

(rn − 1)!
(

1− 1

r2
n

)
F(rn)

n (0)+ o(1).

It is easy to verify that

N∑
k=1

(∮
|λ(k)|=1/ρ

Fm|φλ|2 dλ̄−
∮
|λ(k)|=1/ρ

[Fm]λφλ dλ+
∮
|λ(k)|=1/ρ

[Fm]λφλ̄ dλ̄

)

= o(1),

so we get (4.33).
The function Fm(2φλλ − φ2

λ) is holomorphic outside of the ramification points,
the infinities and the cuts. Applying to it the Cauchy theorem and making use of
Lemma 8 and the asymptotics from Lemma 10, we get the equality

2πi
M∑
n=1

1

(rn − 1)!
(

1− 1

r2
n

)
F(rn)

n (0)

= − 4πi

(rm − 2)! rm
(

d

dxm

)rm−2

Rω,xm(xm)|xm=0+

+
g∑

k=1

∫
Ck∪C−k

{Fm(2φλλ − φ2
λ)} dλ. (4.34)

Summarizing (4.32), (4.33) and (4.34), we get (4.28). ✷
Now we shall differentiate with respect to λm the remaining terms in (4.27).

Denote by Lk;m, G;m the derivatives ∂/∂λmLk, ∂/∂λmG. Since φλ is holomorphic
with respect to λm, we have [φλ̄]λm = 0. Thus,

∂

∂λm

[
− i

2

g∑
k=2

∫
Ck

φλ̄(λ, λ̄) ln|L′k(G(λ))|2 dλ̄−

− i

2

g∑
k=2

∫
Ck

φ(λ, λ̄)
L′′k(G(λ))

L′k(G(λ))
G′(λ) dλ

]
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= i

2

g∑
k=2

∫
Ck

φλ
L′k;m(G(λ))+ L′′k(G(λ))G;m(λ)

L′k(G(λ))
dλ+

+ i

2

g∑
k=2

(Fmφλ + [Fm]λ)L
′′
k(G(λ))

L′k(G(λ))
G′(λ) dλ. (4.35)

(We have used the equality

φλ̄
∂

∂λm
ln|L′k(G(λ))|2 dλ̄+ φ

∂2

∂λ∂λm
ln|L′k(G(λ))|2 dλ

= d

(
φ

∂

∂λm
ln|L′k(G(λ))|2

)
− φλ

∂

∂λm
ln|L′k(G(λ))|2 dλ

and Lemma 9.)
To finish the proof we have to rewrite the last term at the right-hand side of (4.28)

as follows

i

2

∫
Ck∪C−k

{
Fm(2φλλ − φ2

λ)+ [Fm]λφλ
}

dλ

= i

2

∫
Ck∪C−k

φλφλm dλ

= i

2

∫
Ck

φλφλm −
(
φλ + L′′k(G(λ))

L′k(G(λ))
G′(λ)

)
×

×
(
φλm +

L′k;m(G(λ))+ L′′k(G(λ))G;m(λ)
L′k(G(λ))

)
dλ

= − i

2

∫
Ck

[
φλ
L′k;m(G(λ))+ L′′k(G(λ))G;m(λ)

L′k(G(λ))
+ φλm

L′′k(G(λ))

L′k(G(λ))
G′(λ)+

+ L′′k(G(λ))

L′k(G(λ))
G′(λ)

L′k;m(G(λ))+ L′′k(G(λ))G;m(λ)
L′k(G(λ))

]
dλ. (4.36)

Collecting (4.27), (4.28), (4.35) and (4.36) and using the equality

φλm =
G′;m(λ)
G′(λ)

,

we get

∂Sρ

∂λm
+ o(1) = 2π

(rm − 2)! rm
(

d

dxm

)rm−2

Rω,xm|xm=0 −

− i

2

g∑
k=2

∫
Ck

L′′k(G(λ))L′k;m(G(λ))

[L′k(G(λ))]2 G′(λ) dλ−

− i

2

g∑
k=2

∫
Ck

[
L′′k(G(λ))

L′k(G(λ))

]2

G′(λ)G;m(λ) dλ−
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− i

g∑
k=2

∫
Ck

L′′k(G(λ))

L′k(G(λ))
G′;m(λ) dλ. (4.37)

Since {Lk(ω), ω} ≡ 0, the last two terms in (4.37) cancel (one should beforehand
integrate the last term by parts). For the second term we have the equality ([18]):

− i

2

∫
Ck

L′′k(G(λ))L′k;m(G(λ))

[L′k(G(λ))]2 G′(λ) dλ = −4π
lk;m
lk

.

To prove Theorem 7 it is sufficient to observe that the term o(1) in (4.37) is uniform
with respect to parameters (λ1, . . . , λM) belonging to a compact neighborhood of
the initial point (λ0

1, . . . , λ
0
M). ✷

4.2. THE LIOUVILLE ACTION AND THE FUCHSIAN UNIFORMIZATION

4.2.1. The Metric of Constant Curvature −1 on L and its Dependence upon the
Branch Points

The covering L is biholomorphically equivalent to the quotient space H/L, where
H = {z ∈ C : �z > 0}, L is a strictly hyperbolic Fuchsian group. Denote by
πL: H → L the natural projection. Let x be a local parameter on L, introduce the
metric eχ(x,x̄)|dx|2 of the constant curvature −1 on L by the equality

eχ(x,x̄)|dx|2 = |dz|2
|�z|2 , (4.38)

where z ∈ H, πL(z) = x. As usually we specify the functions χ ext(λ, λ̄),
χ int(xm, x̄m), m = 1, . . . ,M and χ∞(ζk, ζ̄k), k = 1, . . . , N setting x = λ, x = xm
and x = ζk in (4.38).

Set Rz,x = {z, x}, where z ∈ H, πL(z) = x. Clearly, Lemmas 7 and 8 still
stand with χ ext, Rz,x instead of φext and Rω,x , whereas Lemma 9 should be recon-
sidered, since the Fuchsian uniformization map depends upon the branch points
nonholomorphically.

Introduce the metric eψ(ω,ω̄)|dω|2 of constant curvature −1 on D0 (see the pre-
vious section) by the equation

eψ(ω,ω̄)|dω|2 = |dz|2
|�z|2 ,

where πH(ω) = πL(z). Then there is the following relation between the derivatives
of the function ψ :

ψλm(ω, ω̄)+ ψω(ω, ω̄)Fm(ω, ω̄)+ [Fm]ω(ω, ω̄) = 0, (4.39)

where F is a continuously differentiable function on D0; (the proof of (4.39) is
parallel to the one in [18]).

We shall now prove the analog of (4.39) and Lemma 9 for the function χ = χ ext.
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LEMMA 12. There is the following relation between the derivatives of the func-
tion χ:

∂χ(λ, λ̄)

∂λm
+ Fm(λ, λ̄)

∂χ(λ, λ̄)

∂λ
+ ∂Fm(λ, λ̄)

∂λ
= 0, (4.40)

where

Fm(λ, λ̄) = Fm(G0(λ),G0(λ))
1

G′0(λ)
+ Fm(λ). (4.41)

Here Fm = −[G0]λm/[G0]λ is the function from Lemma 9, Fm is the function
from (4.39).

Proof. Since

eχ(λ,λ̄)|dλ|2 = eψ(G0(λ),G0(λ))|G′0(λ)|2|dλ|2,
we have the equality

χ(λ, λ̄) = ψ(G0(λ),G0(λ))+ φ(λ, λ̄), (4.42)

where φ(λ, λ̄) = ln|G′0(λ)|2 is the function from (4.7). Differentiating (4.42) with
respect to λm via formulas (4.39) and (4.16), after some easy calculations we
get (4.40). ✷

Remark 7. Observe that the function Fm does not have jumps at the cycles Ck,
whereas the both terms at the right hand side of (4.41) do. This immediately follows
from the formulas

F−m (λ) = F+m (λ)−
Lk;m(G+0 (λ))

L′k(G
+
0 (λ))[G+0 ]λ(λ)

,

[G−0 ]λ(λ) = L′k(G
+
0 (λ))[G+0 ]λ(λ)

and the formula from [18]:

Fm ◦ Lk = FmL
′
k + Lk;m.

Here the indices + and − denote the limit values of the corresponding functions at
the ‘ck’ and the ‘c′k’ sides of the cycle Ck.

LEMMA 13. Fix a number m = 1, . . . ,M. Then for any n = 1, . . . ,M the
following asymptotics holds

Fm(λn + xrnn , λ̄n + x̄rnn )

= δmn + anx
rn−1
n + bnx̄nx

rn−1
n + cnx

rn
n + O(|xn|rn+1) (4.43)

as xm → 0; here an, bn, cn are some complex constants.
At the infinity of the kth sheet of the covering L there is the asymptotics

Fm(λ, λ̄) = Akλ
2 + Bkλ+ Ckλ

2λ̄−1 + O(1) (4.44)

as λ→ ∞(k); here ∞(k) is the point at infinity of the kth sheet of the covering L;
Ak,Bk, Ck are some complex constants.
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Proof. This follows from Corollary 4, asymptotics (4.20) and formula (4.41). ✷

4.2.2. The Regularized Liouville Action

Here we define the regularized integral

reg
∫

L

(|χλ|2 + eχ ) dS

and calculate its derivatives with respect to the branch points λm.
Set Qk

ρ = {λ ∈ L(k) : ∀m |λ − λm| > ρ and |λ| < 1/ρ}, where Pm are all the
ramification points which belong to the kth sheet L(k) of the covering L. To the
sheet L(k) there corresponds the function χ ext

k : L(k) → R which is smooth in any
domain Qk

ρ , ρ > 0.
The function χ ext

k has finite limits at the cuts (except the endpoints which are
the ramification points); at the ramification points and at the infinity it possesses
the same asymptotics as the function φext

k from the previous section.
Observe also that the function eχ

ext
k is integrable on L(k). Set

Tρ =
N∑
k=1

∫
Qk
ρ

|∂λχ ext
k |2 dS. (4.45)

Then there exists the finite limit

reg
∫

L

(|χλ|2 + eχ ) dS

= lim
ρ→0

(
Tρ +

N∑
k=1

∫
L(k)

eχ
ext
k dS +

(
4N +

M∑
m=1

(rm − 1)2

rm

)
2π lnρ

)
. (4.46)

Set

SFuchs(λ1, . . . , λM)

= 1

2π
reg

∫
L

(|χλ|2 + eχ ) dS +
M∑
n=1

(rn − 1)χ int(xn)|xn=0−

−2
N∑
k=1

χ∞(ζk)|ζk=0. (4.47)

Now we state the main result of this section.

THEOREM 8. For any m = 1, . . . ,M the following equality holds

∂SFuchs(λ1, . . . , λM)

∂λm
= 1

(rm − 2)! rm
(

d

dxm

)rm−2

Rz,xm|xm=0. (4.48)
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Proof. Set Qρ =⋃N
k=1 Q

k
ρ . Then

∂

∂λm
Tρ = i

2

rm∑
k=1

∮
|λ(k)−λm|=ρ

|∂λχ |2 dλ̄+
∫
Qρ

∂

∂λm
|∂λχ |2 dS. (4.49)

By (4.40) the last term in (4.49) can be rewritten as∫
Qρ

∂

∂λm
|∂λχ |2 dS

=
∫
Qρ

(
((2χλλ − χ2

λ )[Fm])λ̄ − 2(χλ[Fm]λ̄)λ + (χλ[Fm]λ)λ̄−

− (χλ̄[Fm]λ)λ − (|χλ|2[Fm])λ
)

dS

= − i

2

∫
∂Qρ

(2χλλ − χ2
λ )Fm dλ+

+ 2χλ[Fm]λ̄ dλ̄+ χλ[Fm]λ dλ+ χλ̄[Fm]λ dλ̄+ |χλ|2Fm dλ̄

= − i

2

M∑
n=1

[I n1 + 2I n2 + I n3 + I n4 + I n5 ]−

− i

2

N∑
k=1

[J∞,k
1 + J

∞,k
2 + J

∞,k
3 + J

∞,k
4 + J

∞,k
5 ], (4.50)

where

I n1 =
rn∑
l=1

∮
|λ(l)−λn|=ρ

(2χλλ − χ2
λ )Fm dλ,

J
∞,k
1 =

∮
|λ(k)|=1/ρ

(2χλλ − χ2
λ )Fm dλ

and the terms I np and J∞,k
p , p = 2, 3, 4, 5 are the similar sums of integrals and

integrals with integrands χλ[Fm]λ̄ dλ̄, χλ[Fm]λ dλ, χλ̄[Fm]λ dλ̄ and |χλ|2Fm dλ̄ re-
spectively. It should be noted that the circles |λ − λn| = ρ are clockwise oriented
whereas the circles |λ| = 1/ρ are counter-clockwise oriented. Using (4.43), we get

I n1 =
∮
|xn|=ρ1/rn

[
2Rz,xn(xn)

rnx
2rn−2
n

+
(

1− 1

r2
n

)
1

x
2rn
n

]
×

× (
δmn + anx

rn−1
n + bnx̄nx

rn−1
n + cnx

rn
n + O(|xn|rn+1)

)
rnx

rn−1
n dxn

= −δnm 4πi

(rn − 2)! rn
(

d

dxn

)rn−2

Rz,xm(0)−

− 2πirn

(
1− 1

r2
n

)
cn + o(1). (4.51)
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In the same manner we get

I n2 = o(1),

I n3 = −2πi

(
rn − 1

rn
anχ

int
xn
(0)+ rn

(
1

rn
− 1

)
cn

)
+ o(1), (4.52)

and

I n4 = 2πi

(
1

rn
− 1

)
rncn + o(1),

I n5 = δmn

rn∑
l=1

∮
|λ(l)−λ|=ρ

|χλ|2 dλ̄+

+ 2πiχ int
xn
(0)

1− rn

rn
an + 2πi

(
1

rn
− 1

)2

rncn + o(1). (4.53)

Using (4.44), we get also

J
∞,k
1 = o(1), J

∞,k
2 = o(1),

J
∞,k
3 = −4πi(Akχ

∞
ζk
(0)+ Bk)+ o(1), (4.54)

and

J
∞,k
4 = 4πiBk + o(1), J

∞,k
5 = −4πi(Akχ

∞
ζk
(0)+ 2Bk)+ o(1). (4.55)

Summarizing (4.49–4.55), we have

∂

∂λm
Tρ = 2π

(rm − 2)! rm
(

d

dxm

)rm−2

Rz,xm(0)+ 2π
M∑
n=1

1− rn

rn

(
anχ

int
xn
(0)+ cn

)−
− 4π

N∑
k=1

(
Akχ

∞
ζk
(0)+ Bk

)+ o(1). (4.56)

To finish the proof we need the following lemma.

LEMMA 14. The equalities hold

∂

∂λm
χ int(xn)|xn=0 = − 1

rn
(anχ

int
xn
(0)+ cn) (4.57)

and

∂

∂λm
χ∞(ζk)|ζk=0 = Akχ

∞
ζk
(0)+ Bk. (4.58)
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Proof. We shall prove (4.57); (4.58) can be proved analogously. Since

eχ
int(xn,x̄n)|dxn|2 = eχ

ext(λ,λ̄)|dλ|2,
we get

χ int(xn, x̄n) = χ ext(λ, λ̄)−
(

1

rn
− 1

)
1

r2
n

ln|λ− λn|2 (4.59)

and

χ ext
λm
(λ, λ̄) = χ int

λm
(xn, x̄n)+ const δmn

1

x
rn
n

. (4.60)

By (4.43) and (4.40) we have

χ ext
λm
(λ, λ̄)

= −(
δmn + anx

rn−1
n + bnx̄nx

rn−1
n + cnx

rn
n + O(|xn|rn+1)

)×
×
[

1

rnx
rn−1
n

χ int
xn
(xn, x̄n)+

(
1

rn
− 1

)
1

x
rn
n

]
−

− rn − 1

rn
an

1

xn
− rn − 1

rn
bn
x̄n

xn
− cn + O(|xn|). (4.61)

Now substituting (4.61) in (4.60) and comparing the coefficients near the zero
power of xn, we get (4.57). ✷

Observe that

∂

∂λm

∫
L

eχ dS = 0

due to the Gauss–Bonnet theorem and the term o(1) in (4.56) is uniform with
respect to (λ1, . . . , λM) belonging to a compact neighborhood of the initial point
(λ0

1, . . . , λ
0
M). This together with (4.56) and Lemma 14 proves Theorem 8. ✷

Remark 8. Consider the functional defined by the right-hand side of (4.47). If
we introduce variations δχ which are smooth functions on L vanishing in neigh-
borhoods of the branch points and the infinities then the Euler–Lagrange equation
for an extremal of this functional coinsides with the Liouville equation

χλλ̄ =
1

2
eχ .

The last equation is equivalent to the condition that the metric eχ |dλ|2 has constant
curvature −1.
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4.3. THE MODULUS SQUARE OF BERGMANN AND WIRTINGER

TAU-FUNCTIONS IN HIGHER GENUS

Now we are in a position to calculate the modulus square of Bergmann (and,
therefore, Wirtinger) tau-function. Actually, we shall give two equivalent answers:
one is given in terms of the Fuchsian uniformization of the surface L and the
determinant of the Laplacian, another one uses the Schottky uniformization and
the holomorphic determinant of the Cauchy–Riemann operator in the trivial line
bundle over L.

Indeed, formula (4.2) and Theorem 8 imply the following statement.

THEOREM 9. Let the regularized Liouville action SFuchs be given by formula
(4.47). Then we have the following expression for the modulus square |τB |2 of the
Bergmann tau-function of the covering L:

|τB |2 = e−SFuchs/6 det�

det�B
. (4.62)

For the modulus square |τW |2 of the Wirtinger tau-function we have the expression:

|τW |2 = e−SFuchs/6 det�

det�B

∏
β even

|![β](0|B)|−2/(4g−1+2g−2). (4.63)

On the other hand, using formula (4.4) and Theorem 7, we get the following
alternative answer.

THEOREM 10. Let the regularized Dirichlet integral SSchottky be given by for-
mula (4.23). Then the modulus square of the Bergmann and Wirtinger tau-functions
of the covering L can be expressed as follows:

|τB |2 = e−SSchottky/6|det ∂̄|2, (4.64)

|τW |2 = e−SSchottky/6|det ∂̄|2
∏
β even

|![β](0|B)|−2/(4g−1+2g−2). (4.65)

Remark 9. Comparing (4.64), (4.62) and formula (3.3) for |det ∂̄|2 from [16],
we get the equality

SSchottky − SFuchs = 1

2π
S,

where S is the Liouville action from [18]. Whether it is possible to prove this
relation directly is an open question.

Remark 10. Looking at the formulas for the tau-functions in genera 0 and 1
(and for genus 2 two-fold coverings), one may believe that the expressions for the
tau-functions in higher genus can be also given in pure holomorphic terms, without
any use of the Dirichlet integrals and, especially, the Fuchsian uniformization. At
the least, the Dirichlet integral should be eliminated from the proofs in genus 0
and 1.
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Remark 11. The number of sheets of the covering

Hg,N(1, . . . , 1) −→ C
(M) \�

(or, equivalently, the degree of the Lyashko–Looijenga map) is finite and equals
(up to the factor N !) to the Hurwitz number hg,N . Here M = 2g + 2N − 2, C

(M)

is the Mth symmetric power of C, � = ⋃
i,j {λi = λj }. Due to Remark 4, in

case g = 0, 1 the 12th power τ 12
W of the Wirtinger tau-function gives a global

holomorphic function on Hg,N(1, . . . , 1). It would be very interesting to connect
the Wirtinger tau-function with the Hurwitz numbers hg,N .
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