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NONAUTONOMOUS INTEGRABLE SYSTEMS ASSOCIATED WITH

HURWITZ SPACES IN GENUSES ZERO AND ONE

A. Kokotov,∗ D. Korotkin,∗ and V. Shramchenko∗

Briefly outlining our recent work, we construct a family of nonautonomous integrable systems (deforma-

tions of the principal chiral model) in connection with the Hurwitz spaces of meromorphic functions on

the Riemann sphere, cylinder, and torus. We give differential equations describing the dependence of the

critical points of the rational, elliptic, and trigonometric functions on the critical values. We outline a

relation to the deformation framework of Burtzev–Mikhailov–Zakharov.
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1. Critical points of meromorphic functions on the Riemann sphere,
torus, and cylinder as functions of critical values

This paper is a brief exposition of the results in [1].

1.1. Riemann sphere. We consider a meromorphic function R(γ) of degree N on CP 1 satisfying
the asymptotic condition R(γ) = γ + o(1) as γ → ∞. We suppose that all critical points {γm} of this
function (solutions of the equation R′(γ) = 0) are simple and have noncoinciding images, the critical values
λm = R(γm), λm �= λn for m �= n. The number of critical points is equal to 2N − 2. The equation
λ = R(γ) defines an N -sheeted covering L of the Riemann sphere. Its branch points are denoted by
P1, . . . , P2N−2, and their projections on the base of the covering (λ-sphere) are equal to λ1, . . . , λ2N−2. The
map γ : L � P 	→ γ(P ) ∈ CP 1 gives the uniformization of the compact surface L, and it turns out that this
map, as a function of λ and λ1, . . . , λ2N−2, satisfies the system of differential equations

∂γ

∂λ
=

2N−2∑
n=1

αn

γ − γn
+ 1, (1)

∂γ

∂λn
= − αn

γ − γn
, (2)

where αm are functions of {λk}, namely, αm = v2
m/2 with the vm being the coefficients in the expansion

γ(P ) = γm + vm

√
λ− λm +O(λ− λm) in a neighborhood of the branch point Pm with respect to the local

parameter
√
λ− λm.

The compatibility condition for system (1), (2) gives a system of ODEs for the functions γm({λn}) and
αm({λn}),

∂γm

∂λn
=

αn

γn − γm
, m �= n,

∂γm

∂λm
= 1 +

2N−2∑
n=1, n�=m

αn

γm − γn
,

∂αm

∂λn
=

2αnαm

(γn − γm)2
, m �= n,

∂αm

∂λm
= −

2N−2∑
n=1, n�=m

2αnαm

(γn − γm)2
,

(3)
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for m,n = 1, . . . , 2N − 2. System (3), (4) describes the dependence of the positions of critical points of the
rational map R(γ) on their images.

The rational functions satisfying our asymptotic condition R(γ) = γ + o(1), γ → ∞, can be written in
the form

R(γ) = γ +
N−1∑
k=1

ak

γ − bk
,

which was used by Kupershmidt and Manin in the theory of Benny equations [2]. Equations (3) and (4)
for the critical points of R(γ) can be deduced from the works by Gibbons and Tsarev [3]; Eqs. (1) and (2)
seem new.

1.2. Torus. An analogous system can be written for functions on the torus. According to the
Riemann–Hurwitz formula, a meromorphic function R(γ) of degree N on the torus T = C/{1, µ} has 2N
critical points if we assume that they are simple. We also assume that the corresponding critical values are
distinct and finite, i.e., the genus-one covering L defined by the equation λ = R(γ) has N sheets and 2N
simple branch points P1, . . . , P2N with different projections λ1, . . . , λ2N on the λ sphere. The uniformization
map γ : L � P 	→ γ(P ) ∈ T = C/{1, µ} of the compact Riemann surface L is given by the Abel map, the
integral of the holomorphic normalized (the a period equals unity) Abelian differential v,

γ(P ) =
∫ P

∞(0)
v, (4)

where the initial point of integration coincides with the point at infinity on some (“zeroth”) sheet of the
Riemann surface L.

Let ρ(γ) denote the logarithmic derivative of the odd Jacobi theta function, ρ(γ) ≡ d log θ1(γ)/dγ.
The derivative ρ′(γ) coincides with the Weierstrass P-function up to a rescaling of the argument and an
additive constant.

The following is the elliptic version of Eqs. (1) and (2), the system of differential equations describing
the dependence of the uniformization map γ(P ) (given by (4)) on λ and the projections λm of the branch
points to the λ sphere:

∂γ

∂λ
=

2N∑
n=1

αn[ρ(γ − γn) + ρ(γn)], (5)

∂γ

∂λm
= −αm[ρ(γ − γm) + ρ(γm)], (6)

where, as in the rational case, αm = v2
m/2 and the coefficient vm in the expansion of γ(λ) in a neighborhood

of the branch point Pm with respect to the local parameter
√
λ− λm is given by

vm =
v(P )

d
√
λ− λm

∣∣∣∣
P=Pm

.

The compatibility conditions for system (5), (6) imply the system of equations describing the depen-
dence of the critical points {γm} of the meromorphic function R(γ) on its critical values {λm}:

∂γn

∂λm
= −αm[ρ(γn − γm) + ρ(γm)], m �= n,

∂γm

∂λm
=

2N∑
n=1, n�=m

αn[ρ(γm − γn) + ρ(γn)].

(7)
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The equations for the coefficients αm, which also follow from the compatibility of (5) and (6), are

∂αn

∂λm
= −2αnαmρ′(γn − γm), m �= n,

∂αm

∂λm
=

2N∑
n=1, n�=m

2αnαmρ′(γn − γm).

(8)

In fact, Eqs. (8) are just the Rauch variational formulas [4] for the holomorphic differential v.

1.3. Cylinder. Under an appropriate degeneration of the elliptic covering, when one of the branch
cuts turns into a double point, the period µ of the torus tends to +i∞, and the torus T = C/{1, µ}
degenerates into a cylinder. There remain 2N−2 branch points on the covering; the functions γ and {γm}
depend on these points according to the following system obtained from Eqs. (6)–(8) by taking the limit as
µ → i∞ (for n �= m):

∂γ

∂λm
= −παm[cotπ(γ − γm) + cotπγm],

∂γn

∂λm
= −παm[cotπ(γn − γm) + cotπγm],

∂γm

∂λm
= π

2N−2∑
n=1, n�=m

αn[cotπ(γm − γn) + cotπγn],

∂αn

∂λm
= 2π2 αnαm

sin2 π(γn − γm)
,

∂αm

∂λm
= −2π2

2N−2∑
n=1, n�=m

αnαm

sin2 π(γn − γm)
.

2. Nonautonomous integrable systems and Hurwitz spaces

2.1. Spaces of rational coverings. We consider the linear system of differential equations for a
matrix function Ψ(γ) on the Riemann sphere, γ ∈ CP 1,

∂Ψ
∂λm

=
γ0 − γm

γ − γm
GλmG−1Ψ, (9)

where γ0 ≡ γ(P0), where the point P0 ∈ L is such that its projection λ0 on the λ sphere is independent of
all {λm}, and G({λm}) is a matrix-valued function. As before, γ is the uniformization map of the rational
covering L of the λ sphere CP 1, {λm} are the projections of branch points on the base of the covering, and
{γm} are the images of the branch points under the map γ. The uniformization map and the points {γm}
depend on {λm} as described by Eqs. (2) and (3) in Sec. 1.1. The part of the compatibility conditions
for this system that involves the function G gives the following system of nonautonomous coupled PDEs
(nonautonomous because all γm and γ0 are nontrivial algebraic functions of {λm}):

(
(γ0 − γm)GλmG−1

)
λn

=
(
(γ0 − γn)GλnG

−1
)
λm

. (10)

For N = 2, when R(γ) is a rational function of degree two, the uniformization map γ(λ), which has the
required asymptotic behavior at infinity, has the form

γ(x, y, λ) =
2

x− y

{
λ− x+ y

2
+

√
(λ− x)(λ − y)

}
,

1487



and after the identification λ1 = x, λ2 = y, system (10) coincides with (the complexified version of) the
Ernst equation from general relativity,

(
(x− y)GxG

−1
)
y
+

(
(x − y)GyG

−1
)
x
= 0. (11)

Therefore, integrable systems (10) can be naturally called the generalized Ernst systems associated with
the rational Hurwitz spaces.

2.2. Spaces of elliptic coverings. Here we construct elliptic analogues of integrable systems (10).
Let K be the matrix dimension of our system. The classical elliptic r-matrix of dimension K2 ×K2 is the
following linear operator in the tensor product of two copies of CK (see [5]):

12
r (γ) =

K=1∑
A,B=0

(A,B) �=(0,0)

wAB(γ)
1
σAB

2
σAB, (12)

where wAB are the combinations of Jacobi theta functions

wAB(z) =
θ[AB](z)θ

′
[00](0)

θ[AB](0)θ[00](z)

and θ[AB] denotes the theta function with the characteristics [A/K − 1/2, 1/2− B/K]. All the wAB have
simple poles with a unit residue at z = 0 and twist properties: wAB(z + 1) = εAwAB(z), wAB(z + µ) =
εBwAB(z), where ε = e2πi/K . The matrices σAB for (A,B) �= (0, 0) are the higher-rank analogues of the
Pauli matrices; they form a basis of sl(K,C) and are defined by σAB = HAGB with the diagonal matrix
G = diag{1, ε, ε2, . . . , εK−1} and the cyclic matrix H : Hn

m = δn
m+1, H

1
K = 1 (the bottom index is the row

number). The matrices G and H satisfy the relations εGH = HG, GK = HK = I. Together with σAB, we
introduce the dual basis σAB = (ε−AB/K)σ−A,−B such that tr

(
σABσCD

)
= δC

AδD
B .

We now consider the “elliptic” counterpart of “rational” system (9)

d
1

Ψ
dλm

=
2
tr

(12
r (γ − γm)

2

Jm

) 1

Ψ, (13)

where Jm =
∑

(A,B) �=(0,0) J
AB
m σAB with the scalars JAB

m . As before, Ψ = Ψ(γ, {λm}) is a matrix-valued
function, γ is the uniformization map γ : L → T = C/{1, µ}, {γm} are the images of the branch points of
the covering L, and {λm} are their projections on the λ sphere. The dependence of γ and {γm} on {λm} is
described in (6)–(8). The compatibility condition for this system gives the system of differential equations
for Jm (m �= n)

(
1

Jm)λn = −αn

1

Jmρ′(γm − γn)− αm

2
tr

(12
r ′(γm − γn)

2

Jn

) − [ 1

Jm,
2
tr

(12
r (γm − γn)

2

Jn

)]
, (14)

where r′ denotes the derivative of the r-matrix with respect to its argument and the function ρ is defined
in Sec. 1.2. This integrable system is a genus-one counterpart of generalized Ernst systems (10).

2.3. Spaces of “trigonometric” coverings. Here we again consider the degeneration of the elliptic
covering into the trigonometric one, i.e., we consider the degeneration of a certain branch cut into a double
point when the period µ of the torus tends to +i∞. The functions γm and γ depend on the projections of
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the remaining branch points λ1, . . . , λ2N−2 as in Sec. 1.3. Let the matrix dimension K of our systems be
two. A trigonometric version of “Lax system” (16) is

d
1

Ψ
dλm

=
2
tr

(12
r 0(γ − γm)

2

Jm

) 1

Ψ, (15)

where
12
r 0(γ) =

1
2

π

sinπγ

1
σ1

2
σ1 +

1
2

π

sinπγ

1
σ2

2
σ2 +

1
2
π cotπγ

1
σ3

2
σ3

is the trigonometric r-matrix, which in the 2×2 case gives the limit of the elliptic r-matrix as µ tends to
+i∞, and {σ1, σ2, σ3} are the standard Pauli matrices.

The trigonometric version of system (14) for Jm = J1
mσ1 + J2

mσ2 + J3
mσ3 provides the compatibility

condition for system (15):

(J1
m)λn =

αnπ
2

sin2 π(γm − γn)
J1

m +
αmπ2 cosπ(γm − γn)

sin2 π(γm − γn)
J1

n +

+
2πi

sinπ(γm − γn)
(
J2

mJ3
n cosπ(γm − γn)− J3

mJ2
n

)
,

(J2
m)λn =

αnπ
2

sin2 π(γm − γn)
J2

m +
αmπ2 cosπ(γm − γn)

sin2 π(γm − γn)
J2

n +

+
2πi

sinπ(γm − γn)
(
J3

mJ1
n − J1

mJ3
n cosπ(γm − γn)

)
,

(J3
m)λn =

αnπ
2

sin2 π(γm − γn)
J3

m +
αmπ2

sin2 π(γm − γn)
J3

n +

+
2πi

sinπ(γm − γn)
(
J1

mJ2
n − J2

mJ1
n

)
.

The coefficients of this system can be computed explicitly in the case of the simplest elliptic covering, which
has two sheets and four branch points. After the degeneration, the covering becomes rational with two
branch points and one marked point (which is left from the degenerated branch cut). Considering the limit
when this point tends to infinity, we obtain the system for J1,

(J1
1 )λ2 =

1
2

1
λ1 − λ2

J1
1 − 2πiJ3

1J
2
2 ,

(J2
1 )λ2 =

1
2

1
λ1 − λ2

J2
1 + 2πiJ3

1J
1
2 ,

(J3
1 )λ2 =

1
2

1
λ1 − λ2

(J3
1 − J3

2 ) + 2πi(J1
1J

2
2 − J2

1J
1
2 ),

(16)

and the similar system for J2,

(J1
2 )λ1 =

1
2

1
λ2 − λ1

J1
2 + 2πiJ3

2J
2
1 ,

(J2
2 )λ1 =

1
2

1
λ2 − λ1

J2
2 − 2πiJ3

2J
1
1 ,

(J3
2 )λ1 =

1
2

1
λ1 − λ2

(J3
1 − J3

2 ) + 2πi(J1
1J

2
2 − J2

1J
1
2 ).

(17)
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3. Relationship to the framework of Burtzev, Mikhailov, and
Zakharov

The possibility of constructing the whole class of “deformed” integrable systems (or integrable systems
with a “variable spectral parameter” that are different from the Ernst equation) was first found in 1989 in
the work by Burtzev, Mikhailov, and Zakharov [6], where they proposed considering Lax pairs of the form

∂Ψ
∂x

= UΨ,
∂Ψ
∂y

= VΨ, (18)

where x and y are independent variables and the matrices U and V depend on (x, y) and the “variable
spectral parameter” γ,

U(x, y, γ) = u0(x, y) +
N1∑

n=1

un(x, y)
γ(x, y)− γn(x, y)

,

V (x, y, γ) = v0(x, y) +
N2∑

n=1

vn(x, y)
γ(x, y)− γ̃n(x, y)

.

(19)

As a part of the compatibility conditions for linear system (18), after an appropriate fractional-linear
transformation in the γ plane, the following system of equations for γ(x, y) must be satisfied:

∂γ

∂x
+

N1∑
m=1

cm

γ − γm
= 0,

∂γ

∂y
+

N2∑
m=1

bm

γ − γ̃m
= 0, (20)

where bn and cn are certain functions of (x, y). The compatibility condition for system (20) gives the system
for γn(x, y) and γ̃n(x, y):

∂γn

∂y
+

N2∑
m=1

bm

γn − γ̃m
= 0,

∂γ̃n

∂x
+

N1∑
m=1

cm

γ̃n − γm
= 0,

∂cn

∂y
− 2cn

N2∑
m=1

bm

(γn − γ̃m)2
= 0,

∂bn

∂x
− 2bn

N1∑
m=1

cm

(γ̃n − γm)2
= 0.

(21)

It is easy to establish a relation between solutions of system (20), (21) on one hand and system (2), (3)
on the other.

Namely, we suppose that the function γ(λ, {λm}), m = 1, . . . 2N − 2, satisfies Eqs. (2) with respect to
the variables λm. We assume that 2N − 2 = N1 +N2 and split the set of variables {λ1, . . . , λN1+N2} into
two subsets: {λ1, . . . , λN1} and {λ̃1, . . . , λ̃N2}, where λ̃n ≡ λN1+n, n = 1, . . . , N2. In the same way, we split
the set of values of the function γ at these points, γm ≡ γ(λm):

{γ1, . . . , γ2N−2} = {γ1, . . . , γN1} ∪ {γ̃1, . . . , γ̃N2},

where γ̃n ≡ γN1+n, n = 1, . . . , N2.
We now assume that the “nontilded” variables λ1, . . . , λN1 are arbitrary functions of the variable x

and the “tilded” variables λ̃1, . . . , λ̃N2 are arbitrary functions of the variable y. For the derivative of γ with
respect to x, for example, we then obtain the following from (2) according to the chain rule:

∂γ

∂x
=

N1∑
m=1

∂γ

∂λm

∂λm

∂x
= −

N1∑
m=1

∂λm

∂x

αm

γ − γm
. (22)
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Therefore,

∂γ

∂x
+

N1∑
m=1

cm

γ − γm
= 0, (23)

where cm ≡ αm∂λm/∂x. This coincides with the first equation in (20). The second equation in (20) is
obtained in the same way after the identification bm ≡ αN1+m∂λN1+m/∂y. Equations (21) for γn, bn, and
cn as functions of (x, y) arise as the compatibility conditions for the equations for ∂γ/∂x and ∂γ/∂y.
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