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Isomonodromic Tau-Function of Hurwitz

Frobenius Manifolds and Its Applications

A. Kokotov and D. Korotkin

1 Introduction

The Hurwitz space Hg,N is the space of equivalence classes of pairs (L, π), where L is

a compact Riemann surface of genus g and π is a meromorphic function of degree N.

The Hurwitz space is stratified according to multiplicities of poles and critical points of

function π (see [13, 26]); in this paper we will mainly work within the generic stratum

Hg,N(1, . . . , 1), for which all critical points and poles of function π are simple. Denote the

critical points of function π by P1, . . . , PM (M = 2N + 2g − 2 according to the Riemann-

Hurwitz formula); the critical values λm = π(Pm) can be used as (local) coordinates on

Hg,N(1, . . . , 1). The function π defines a realization of the Riemann surface L as an N-

sheeted branched covering of CP1 with ramification points P1, . . . , PM and branch points

λm = π(Pm); enumerate the points at infinity of the branched covering in some order and

denote them by ∞1, . . . ,∞N. In a neighbourhood of the ramification point Pm the local

coordinate is chosen to be xm(P) =
√

π(P) − λm, m = 1, . . . ,M; in a neighbourhood of any

point ∞n the local parameter is xM+n(P) = 1/π(P), n = 1, . . . ,N.

Fix a canonical basis of cycles (aα, bα) on L and introduce the prime-form E(P,Q)

on L and canonical meromorphic bidifferential

W(P,Q) = dPdQ ln E(P,Q). (1.1)
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2 A. Kokotov and D. Korotkin

The bidifferential W has the second-order pole at Q = P with the following local be-

haviour:

W(P,Q)
dx(P)dx(Q)

=
1

(
x(P) − x(Q)

)2
+

1

6
SB

(
x(P)

)
+ o(1), (1.2)

where x(P) is a local coordinate; SB(x(P)) is the Bergman projective connection.

The central object of this paper is the function τ(λ1, . . . , λM) (the “tau-function”)

defined by the following system of equations:

∂

∂λm
ln τ = −

1

12
SB

(
xm

)
|xm=0, m = 1, . . . ,M; (1.3)

compatibility of this system can be obtained as a simple corollary of the Rauch vari-

ational formulas [19]. In global terms, τ is a horizontal holomorphic section of the flat

holomorphic line bundle TB (see [19]) over the space Ĥg,N(1, . . . , 1), which covers Hg,N(1,

. . . , 1), and consists of pairs (weakly marked Riemann surface L; meromorphic function

π with simple poles and critical points). This covering space appears due to dependence

of the bidifferential W (and, therefore, the Bergman projective connection) on the choice

of homology basis on L.

In the Frobenius manifolds theory [5], apart from the prepotential (solutions of

WDVV equations), an important role is played by the so-called G-function, which is the

genus one free energy, corresponding to a given Frobenius manifold (the prepotential

itself equals to the planar limit of the free energy). It was conjectured by Givental [14] and

proved by Dubrovin-Zhang [7] that the G-function can be expressed in terms of Jimbo-

Miwa tau-function of the isomonodromic problem corresponding to a given Frobenius

manifold.

In [5] Frobenius manifold structures were found on an arbitrary Hurwitz space;

so far this is, probably, one of most well-understood classes of Frobenius manifolds (al-

ternative structures of Frobenius manifolds on Hurwitz spaces were recently found in

[28, 29]). As it was recently proved in [18], the definition of isomonodromic tau-function

τ(λ1, . . . , λM) of Hurwitz Frobenius manifolds from [5] is equivalent to (1.3).

The same tau-function (1.3) appears as one of two multipliers in the Jimbo-

Miwa tau-function corresponding to another class of Riemann-Hilbert problems—the

Riemann-Hilbert problems with quasi-permutation monodromy matrices [23].

In [19] it was also revealed the role of the function τ in the problem of holomor-

phic factorization of the determinant of the Laplacian on Riemann surfaces: namely, up
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 3

to a factor involving an appropriate regularized Dirichlet integral and the matrix of b-

periods of a Riemann surface, the determinant of Laplace operator (in the Poincaré met-

ric) acting in the trivial line bundle over Riemann surface is given by |τ|2.

Another important area where the same tau-function appeared recently is the

large N limit of Hermitian two-matrix model [10]; in this paper it was realized that the

subleading correction to the free energy of such models formally almost coincides with

the G-function of Hurwitz Frobenius manifolds. In particular, the isomonodromic tau-

function (1.3) is the most non-trivial ingredient of this subleading correction.

For N = 2 and arbitrary g, the Riemann surface L is hyperelliptic, and can be

defined by w2 =
∏2g+2

m=1 (λ − λm). In this case τ = det A
∏M

m�=n(λm − λn)1/4 [16], where A

is the matrix of a-periods of non-normalized holomorphic differentials λα−1dλ/w, α =

1, . . . , g. In other simple cases, when g = 0, 1 and N is arbitrary, the function τ was found

in [19]; this result allowed to compute the G-function of Frobenius manifold related to

the extended affine Weyl group W̃(AN−1) (originally found in [30]) and the G-function of

Frobenius manifold related to the Jacobi group J(AN−1) (conjectured in [30]).

The goal of this paper is to compute the tau-function of the isomonodromy prob-

lem corresponding to Frobenius structures on an arbitrary Hurwitz space Hg,N(1, . . . , 1).

Consider the divisor D of the differential dπ: D =
∑M+N

k=1 dkDk, where Dm = Pm,

dm = 1 for m = 1, . . . ,M and DM+n = ∞n, dM+n = −2 for n = 1, . . . ,N. Here and below,

if the argument of a differential coincides with a point Dk of divisor D, we evaluate this

differential at this point with respect to local parameter xk. In particular, for the prime

form we will use the following conventions:

E
(
Dk,Dl

)
:= E(P,Q)

√
dxk(P)

√
dxl(Q)|P=Dk, Q=Dl

, (1.4)

for k, l = 1, . . . ,M+N. The next notation corresponds to prime forms, evaluated at points

of divisor D with respect to only one argument:

E
(
P,Dk

)
:= E(P,Q)

√
dxk(Q)|Q=Dk

, (1.5)

k = 1, . . . ,M + N; in contrast to E(Dk,Dl), which are just scalars, E(P,Dk) are −1/2-forms

with respect to P.

Denote by v1, . . . , vg the normalized (
∮

aα
vβ = δαβ) holomorphic differentials on

L; Bαβ =
∮

bα
vβ is the corresponding matrix of b-periods; Θ(z | B) is the theta-function.

Let us dissect the Riemann surface L along its basic cycles to get its fundamental polygon

L̂; choose some initial point P ∈ L̂ and introduce the corresponding vector of Riemann
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4 A. Kokotov and D. Korotkin

constants

KP
α =

1

2
+

1

2
Bαα −

∑

β�=α

∮

aβ

(
vβ(Q)

∫Q

P

vα

)
; α = 1, . . . , g (1.6)

and the Abel map [AP]α(Q) =
∫Q

P
vα, computed along path which does not intersect ∂L̂.

The following theorem, together with its applications, is the main result of this

paper.

Theorem 1.1. Assume that the fundamental domain L̂ is chosen in such a way that

A(D) + 2KP = 0. (1.7)

The isomonodromic tau-function (1.3) of a Frobenius manifold associated to the Hurwitz

space Hg,N(1, . . . , 1) is given by the following expression:

τ = F2/3
M+N
∏

k,l=1 k<l

[
E
(
Dk,Dl

)]dkdl/6
, (1.8)

where the quantity F defined by

F =

[
dπ(P)

](g−1)/2

W(P)

{
M+N
∏

k=1

[
E
(
P,Dk

)](1−g)dk/2

}

×
g

∑

α1,...,αg=1

∂gΘ
(
KP

)

∂zα1
· · ·∂zαg

vα1
(P) · · · vαg(P)

(1.9)

is independent of the point P ∈ L. Here Θ is the theta-function of L;

W(P) := det
1≤α,β≤g

∥∥v
(α−1)
β (P)

∥∥ (1.10)

denotes the Wronskian determinant of holomorphic differentials at the point P. �

The proof of this theorem is contained in Section 2.

In Section 3 we discuss applications of the formula (1.8). First, in Section 3.1 we

show how to find the G-function of Frobenius manifolds from [5] corresponding to Hur-

witz spaces; the resulting formula looks as follows:

G = −
1

2
ln τ −

1

48

M
∑

m=1

ln ResPm

ϕ2

dλ
, (1.11)
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 5

where ϕ is a primary differential defining the Frobenius manifold.1 In Section 3.2 we use

the tau-function (1.8) to compute the genus one correction to the free energy of Hermit-

ian two-matrix model. In Section 3.3 the formula (1.8) is used to get a new expression

(valid up to a constant independent of moduli of the Riemann surface) for the deter-

minant of the Laplacian on Riemann surface L in Poincaré metric. A formula for det Δ

in Arakelov metric was proved by Fay [12]; combining this formula with Polyakov’s for-

mula relating determinants of Laplacians in different conformal metrics on the same

Riemann surface, one can get an expression for det Δ in the Poincaré metric. The expres-

sion we derive here is different, and is given by the modulus square of the tau-function

(1.8) multiplied by the exponent of an appropriate Dirichlet integral. In Section 3.4 we

show how to apply the formula (1.8) to find the Jimbo-Miwa tau-function of another

class of Riemann-Hilbert problems—the ones with arbitrary quasi-permutation mon-

odromy matrices [23].

This paper is based on the authors’ preprint [20].

2 Proof of the main theorem

2.1 Variational formulas on the spaces of branched coverings

Here we establish the formulae describing the variations of basic holomorphic objects

(holomorphic differentials, the canonical bidifferential, the prime form, the vector of

Riemann constants, etc.) on the Riemann surface L under the variation of a critical value

of the map π : L → CP1.

With a slight abuse of terminology we denote the branched covering of the Rie-

mann sphere defined by the function π on the Riemann surface L by the same letter L; the

coordinate on the covered Riemann sphere will be denoted by λ. The zeros of dπ are the

ramification points of the branched covering L; the local parameter in a neighbourhood

of Pm is xm =
√

λ − λm, according to the notations from Section 1.

First, we recall the properties of the prime form E(P,Q) (see [11, 12]), which is an

antisymmetric −1/2-differential with respect to both P and Q.

(i) Under tracing of Q along the cycle aα the prime-form remains invariant; un-

der the tracing along bα it gains the factor

exp

(
− πiBαα − 2πi

∫Q

P

vα

)
. (2.1)

1The tau-function τ is defined according to original formula of Jimbo-Miwa [15]; the isomonodromic tau-
function τI defined in [7] is related to τ as follows: τI = τ−1/2 (we thank V. Shramchenko for this observa-
tion). Here we prefer the convention of [15], since it is this definition which guarantees the holomorphy of the
tau-function in general case.
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6 A. Kokotov and D. Korotkin

(ii) The prime form can be expressed in terms of the canonical meromorphic bi-

differential W(P,Q) as follows:

E2(P,Q)dx(P)dy(Q)

= lim
P0→P,Q0→Q

(
x
(
P0

)
− x(P)

)(
y(Q) − y

(
Q0

))
exp

(
−

∫Q0

P0

∫Q

P

W(·, ·)
)

.

(2.2)

(iii) At the diagonal Q = P, the prime form has the first-order zero; the following

asymptotics holds:

E
(
x(P), x(Q)

)√
dx(P)

√
dx(Q)

=
(
x(Q)−x(P)

)(
1−

1

12
SB

(
x(P)

)(
x(Q) − x(P)

)2
+ O

(
x(Q) − x(P)

)3
)

,

(2.3)

as Q → P, where SB is the Bergman projective connection and x(P) is an

arbitrary local parameter.

Now for any two points P,Q ∈ L̂ we define

s(P,Q) := exp

{

−

g
∑

α=1

∮

aα

vα(R) ln
E(R, P)
E(R,Q)

}

. (2.4)

This object is a (multivalued) nonvanishing holomorphic g/2-differential on L̂ with re-

spect to P and nonvanishing holomorphic −g/2-differential with respect to Q. Under

tracing along the cycles aα and bα it gains the multipliers 1 and exp[(g−1)πiBαα +2πiKP
α]

with respect to P and the multipliers 1 and exp[(1 − g)πiBαα − 2πiK
Q
α ] with respect to Q.

As in the case of the prime form, if one of the arguments coincides with a point of

D, we evaluate s in the corresponding local parameter:

s
(
Dk,Q

)
:= s(P,Q)

(
dxk(P)

)−g/2
|P=Dk

, (2.5)

where k = 1, . . . ,M + N. For arbitrary two points P,Q �∈ D we introduce the following

notation:

σ(P,Q) := s(P,Q)
(
dπ(P)

)−g/2(
dπ(Q)

)g/2
. (2.6)

Let us fix two points P0,Q0 ∈ L (for convenience in the sequel we assume that

these points do not coincide with points of D), and introduce another object which plays
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 7

an important role below, the following (non-singlevalued) holomorphic 1-differential on

L̂:

ω(P) = s2
(
P,Q0

)
E
(
P, P0

)2g−2(
dπ

(
Q0

))g(
dπ

(
P0

))g−1
; (2.7)

in agreement with the previous notations, ω(Dk) := (ω(P)/dxk(P))|P=Dk
. The differential

ω(P) has multipliers 1 and exp(4πiKP0
α ) along the basic cycles aα and bα, respectively.

The only zero of the 1-form ω on L̂ is P0; its multiplicity equals 2g − 2.

Consider the following Schwarzian derivative (which depends on the chosen

point P0, but is obviously independent of the point Q0 from (2.7)):

SP0
Fay

(
x(P)

)
:=

{ ∫P

ω(P), x(P)
}

, (2.8)

where x(P) is a local coordinate on L; SP0
Fay is a projective connection (see, e.g., [31]) on

L; this object was introduced and exploited by Fay [12] in a different form (and without

mentioning that it is a projective connection).

Introduce also the following holomorphic non-singlevalued g(1−g)/2-differential

on L̂ which has multipliers 1 and exp{−πi(g − 1)2Bαα − 2πi(g − 1)KP
α} along basic cycles

aα and bα, respectively:

C(P) =
1

W
[
v1, . . . , vg

]
(P)

g
∑

α1,...,αg=1

∂gΘ
(
KP

)

∂zα1
· · ·∂zαg

vα1
· · · vαg(P), (2.9)

where W(P) is the Wronskian (1.10) from the introduction.

The differential C is an essential ingredient of the Mumford measure on the mod-

uli space of Riemann surfaces of given genus [12]. For g > 1 the multiplicative differential

s (2.4) is expressed in terms of C as follows [12]:

s(P,Q) =

(
C(P)
C(Q)

)1/(1−g)

. (2.10)

According to [12, Corollary 1.4], C(P) does not have any zeros. Moreover, this object ad-

mits the following alternative representation:

C(P) =
Θ

(∑g−1
α=1 AP

(
Rα

)
+ AQ

(
Rg

)
+ KP

) ∏

α<β E
(
Rα, Rβ

) ∏g
α=1 s

(
Rα, P

)

∏g
α=1 E

(
Q,Rα

)
det

∥∥vα

(
Rβ

)∥∥g

α,β=1
s(Q,P)

,

(2.11)

where Q,R1, . . . , Rg ∈ L are arbitrary points of L.
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8 A. Kokotov and D. Korotkin

The following theorem describes the behaviour of the basic holomorphic differ-

entials vα, the matrix B of b-periods, the canonical bidifferential W(P,Q), the prime form

E(P,Q), the vector of Riemann constants KP, and the multiplicative differentials s(P,Q)

and C(P) under variations of the critical values λm.

From now on we use the notation

∂mT
(
Pm

)
:=

dT
(
xm

)

dxm

∣∣
∣∣
xm=0

(2.12)

for the derivative of a tensor T(xm)(dxm)r of a (possibly fractional)weight r at the critical

point Pm calculated with respect to the local parameter xm.

Theorem 2.1. Let the coordinates λ(P) = π(P) and λ(Q) = π(Q) of the points P and Q

do not change when the covering π : L → CP1 deforms. Under the convention that all

the tensor objects with arguments P, Q, and Q0 are calculated in the local parameter λ

lifted from the base CP1 of the covering π and all the tensor objects with argument Pm

are calculated in the local parameter xm =
√

λ − λm, the following variational formulae

hold:

∂vα(P)
∂λm

=
1

2
W

(
P, Pm

)
vα

(
Pm

)
, (2.13)

∂Bαβ

∂λm
= πivα

(
Pm

)
vβ

(
Pm

)
, (2.14)

∂W(P,Q)
∂λm

=
1

2
W

(
P, Pm

)
W

(
Pm,Q

)
, (2.15)

∂E(P,Q)
∂λm

= −
1

4

[
∂m ln

E
(
P, Pm

)

E
(
Q,Pm

)
]2

, (2.16)

∂KP
α

∂λm
=

1

2
vα

(
Pk

)
∂m ln

(
s
(
Pm,Q0

)
E
(
Pm, P

)g−1)
−

1

4
∂mvα

(
Pm

)
, (2.17)

∂σ(P,Q)
∂λm

=
1

4

{

∂m ln
E
(
Pm, P

)

E
(
Pm,Q

)
}

{

∂m ln
[
s
(
Pm,Q0

)2
E
(
Pm, P

)g−1
E
(
Pm,Q

)g−1
]}

−
1

4
∂2

m ln
E
(
Pm, P

)

E
(
Pm,Q

) , (2.18)

∂C(P)
∂λm

= −
1

8

(
SB − SP

Fay

)(
Pm

)
, (2.19)

where the expressions in the right-hand sides of (2.17), (2.18), and (2.19) are Q0-indepen-

dent. �

Remark 2.2. Formally, the expressions (2.13)–(2.19) are complete analogs of variational

formulas (3.21), (3.22), (3.24), and (3.25) from [12]. However, Theorem 2.1 cannot be
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 9

obtained as a straightforward consequence of the formulae from [12]. In the scheme of

moduli deformation used in [12] the C∞ -surface L is fixed and the systems of coordi-

nates defining the complex structures on L vary, while we use the branch points as the

local coordinates on the moduli space. Although it is not too difficult to establish a direct

correspondence between the two deformation schemes for the objects which do not de-

pend on a point of the Riemann surface (see, e.g., [19]), for the point-dependent objects

(like all the objects listed in the theorem except the matrix of b-periods) it is much less

trivial, since the fixing of the argument in the two schemes is essentially different. There-

fore, we prove the theorem independently; formally the proof looks very similar to [12].

Proof. An elementary proof of formulae (2.13)–(2.15) can be found in [19]. As in [12], for-

mula (2.16) immediately follows from (2.15) and (2.2). Let us prove (2.17).

One may assume that the projections of a- and b-cycles on λ-plane do not move

when the covering deforms. Varying the right-hand side of (1.6) via (2.14) and (2.13) and

taking into account (1.1), we get

∂λmKP
α =

πi

2
vα

(
Pm

)2
−

∑

β�=α

∮

aβ

1

2

{

∂λ∂m ln E
(
λ, Pm

)
vβ

(
Pm

) ∫λ

P

vα

}

dλ

−

∮

aβ

vβ(λ)
∫λ

P

(
1

2
∂λ ′∂m ln E

(
λ ′, Pm

)
vα

(
Pm

))
dλ ′

=
πi

2
vα

(
Pm

)2
−

1

2

∑

β�=α

vβ(Pm)
∮

aβ

{(
∂λ∂m ln E

(
λ, Pm

)) ∫λ

P

vα

}

dλ

−
vα

(
Pm

)

2

∑

β�=α

∮

aβ

vβ(λ)∂m ln
E
(
λ, Pm

)

E
(
P, Pm

)

=
πi

2
vα

(
Pm

)2
+

g − 1

2
vα

(
Pm

)
∂m ln E

(
P, Pm

)

−
1

2

∑

β�=α

vβ

(
Pm

) ∮

aβ

{

∂λ∂mE
(
λ, Pm

) ∫λ

P

vα

}

dλ

−
vα

(
Pm

)

2

∑

β�=α

∮

aβ

vβ(λ)∂m ln E
(
λ, Pm

)

=
πi

2
vα(Pm)2 +

vα

(
Pm

)

2
∂m ln Eg−1

(
P, Pm

)

−
1

2

∑

β�=α

vβ

(
Pm

) ∮

aβ

{

∂λ∂mE
(
λ, Pm

) ∫λ

P

vα

}

dλ

+
vα

(
Pm

)

2
∂m ln s

(
Pm,Q0

)
+

vα

(
Pm

)

2

∮

aα

vα(λ)∂m ln E
(
Pm, λ

)
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10 A. Kokotov and D. Korotkin

=
vα

(
Pm

)

2
∂m ln s

(
Pm,Q0

)
Eg−1

(
P, Pm

)
+

πi

2
vα

(
Pm

)2

+
1

2

g
∑

β=1

vβ

(
Pm

) ∮

aβ

{

∂m ln E
(
λ, Pm

)}
vα(λ),

(2.20)

where the last equality is obtained via integration by parts (which is possible since the

prime form has no twists along the a-cycles). Following Fay [12], we notice that, due to

(2.1), the sum of the last two terms in the latter expression coincides with the following

integral over the boundary of the fundamental polygon L̂:

−
1

8πi

∮

∂L̂

vα(λ)
(
∂m ln E

(
λ, Pm

))2
. (2.21)

From asymptotics (2.3) and the Cauchy formula it follows that integral (2.21) coincides

with

−
1

4
v ′

α

(
xm

)
∣∣
∣∣
xm=0

≡ −
1

4
∂mvα

(
Pm

)
, (2.22)

which gives (2.17).

Let us prove (2.18). Due to (2.13) and (2.16), we have

∂λm ln s(P,Q) = −∂λm

g
∑

β=1

∮

aβ

vβ(λ) ln
E(λ, P)
E(λ,Q)

= −
1

2

g
∑

β=1

∮

aβ

[
∂λ∂m ln E

(
Pm, λ

)]
vβ(Pm) ln

E(λ, P)
E(λ,Q)

dλ

+
1

4

g
∑

β=1

∮

aβ

vβ(λ)
{(

∂m ln
E
(
λ, Pm

)

E
(
P, Pm

)
)2

−

(
∂m ln

E
(
λ, Pm

)

E
(
Q,Pm

)
)2}

:= Σ1 + Σ2.

(2.23)

To simplify the first sum in (2.23) we integrate it by parts, rewrite the resulting

expression as the integral over the boundary of the fundamental polygon and apply the

Cauchy theorem:

Σ1 =
1

2

g
∑

β=1

∮

aβ

vβ

(
Pm

)
∂m ln E

(
Pm, λ

)
∂λ ln

E
(
λ, P

)

E(λ,Q)
dλ

= −
1

8πi

∮

∂L̂

(
∂m ln E

(
Pm, λ

))2
∂λ ln

E(λ, P)
E(λ,Q)

dλ

= −
1

4

[
∂2

m ln
E
(
Pm, P

)

E
(
Pm,Q

) +
(
∂m ln E

(
P, Pm

))2
−

(
∂m ln E

(
Q,Pm

))2
]
.

(2.24)
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 11

Here we used the fact that the function

λ �−→ ∂λ ln
E(λ, P)
E(λ,Q)

(2.25)

is single-valued on L and that

∮

aβ

∂λ ln
E(λ, P)
E(λ,Q)

dλ = 0, (2.26)

due to the single-valuedness of the prime form along the a-cycles.

The second sum in (2.23) can be rewritten as

Σ2 =
1

4

g
∑

β=1

∮

aβ

vβ(λ)
{

2∂m ln E
(
λ, Pm

)
∂m ln

E
(
Q,Pm

)

E
(
P, Pm

)

+ ∂m ln
(
E
(
P, Pm

)
E
(
Q,Pm

))
∂m ln

E
(
P, Pm

)

E
(
Q,Pm

)
}

= −
1

2
∂m ln

E
(
P, Pm

)

E
(
Q,Pm

)
g

∑

β=1

{

∂m

∮

aβ

vβ(λ) ln
E
(
λ, Pm

)

E
(
λ,Q0

)
}

+
g

4
∂m ln

(
E
(
P, Pm

)
E
(
Q,Pm

))
∂m ln

E
(
P, Pm

)

E
(
Q,Pm

)

=
1

4
∂m ln

E
(
P, Pm

)

E
(
Q,Pm

)∂m ln
[
s2

(
Pm,Q0

)
Eg

(
P, Pm

)
Eg

(
Q,Pm

)]
.

(2.27)

Relation (2.18) follows from (2.24) and (2.27).

Now we are in a position to prove the main statement (2.19) of the theorem.

Let us first rewrite the definition of Fay’s projective connection (2.8) in a local

parameter ζ as follows:

SP
Fay(ζ) = 2∂2

ζζ ln
[
s
(
ζ,Q0

)
E(ζ, P)g−1(dζ)−1/2

]

− 2
(
∂ζ ln

[
s
(
ζ,Q0

)
E
(
ζ, P

)g−1(dζ)−1/2
])2

.

(2.28)

Similarly to [12], to prove (2.19) we are to vary the logarithm of the right-hand

side of expression (2.11) and pass to the limit R1, . . . , Rg → P, and then Q → Pm.

In what follows all the tensor objects with arguments P, Q, R1, . . . , Rg are calcu-

lated in the local parameter λ and, as before, the appearance of the argument Pm means

that the corresponding tensor is calculated in the local parameter xm at the point xm = 0.
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12 A. Kokotov and D. Korotkin

The next lemma describes the variation of the determinant det ‖vα(Rβ)‖ from the

denominator of expression (2.11).

Lemma 2.3. Assume that none of the points R1, . . . , Rg coincide with the ramification

points {Pm}, and the projections of the points {Rα} on λ-plane do not depend on {λm}. Then

the following variational formula holds:

lim
R1,...,Rg→P

∂ ln det
∥∥vα

(
Rβ

)∥∥

∂λm

= −
1

2

g
∑

α,β=1

∂2
zαzβ

ln Θ
(
KP − AP

(
Pm

))
vα

(
Pm

)
vβ

(
Pm

)
.

(2.29)

�

This lemma is an immediate corollary of (2.13) and the formula (35) from [11],

which expresses the second derivative of the theta-function Θ(A|
Q
P − K) in terms of the

bidifferential W.

Using (2.14), we can represent the variation of the theta-functional term from the

numerator of (2.11) as follows:

∂λm ln Θ

(
g−1
∑

γ=1

AP

(
Rγ

)
+ AQ

(
Rg

)
+ KP | B

)

=

g
∑

γ=1

[
∂λm

∫
∑g

γ=1 Rγ

Q+(g−1)P
vα + ∂λmKP

α

]
∂ ln Θ

∂zα
+ πi

g
∑

α,β=1

∂ ln Θ

∂Bαβ
vα

(
Pm

)
vβ

(
Pm

)
.

(2.30)

We have

∂λm

∫
∑g

γ=1 Rγ

Q+(g−1)P
vα =

1

2

∫
∑g

γ=1 Rγ

Q+(g−1)P
∂m∂λ ln E

(
λ, Pm

)
vα

(
Pm

)
dλ

=
1

2
∂m ln E

(
P, Pm

)
vα

(
Pm

)
−

1

2
∂m ln E

(
Q,Pm

)
vα

(
Pm

)
+ o(1)

(2.31)

as R1, . . . , Rg → P. Now from (2.30), (2.31), (2.17), the heat equation for the theta-function

and the obvious relation

∂m ln Θ
(
KP − AP

(
Pm

))

≡ ∂xm ln Θ

( ∫P

xm

�v + KP

)∣
∣∣∣
xm=0

= −

g
∑

α=1

(
ln Θ

)
zα

vα

(
Pm

) (2.32)
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 13

it follows that

lim
R1,...,Rg→P

∂λm ln Θ

(
g−1
∑

γ=1

AP

(
Rγ

)
+ AQ(Rg) + KP | B

)

= −
1

2
∂m ln Θ

(
KP − A

(
Pm

))
∂m ln

[
s
(
Pm,Q0

)
Eg

(
Pm, P

)]

−
1

4

g
∑

α=1

∂zα ln Θ
(
KP − AP(Q)

)
∂mvα

(
Pm

)

+
1

4Θ
(
KP − AP(Q)

)
g

∑

α,β=1

∂2
zαzβ

Θ
(
KP − AP(Q)

)
vα

(
Pm

)
vβ

(
Pm

)

−
1

2

g
∑

α=1

∂zα ln Θ
(
KP − AP(Q)

)
∂m

[
ln E

(
Q,Pm

)]
vα

(
Pm

)

= −
1

2
∂m ln Θ

(
KP − A

(
Pm

))
∂m ln

[
s
(
Pm,Q0

)
Eg

(
Pm, P

)]
+

∂2
mΘ

(
KP − A

(
Pm

))

4Θ
(
KP − AP

(
Pm

))

−
1

2

g
∑

α=1

∂zα ln Θ
(
KP − AP(Q)

)
∂m

[
ln E

(
Q,Pm

)]
vα

(
Pm

)
+ o(1)

(2.33)

as Q → Pm. The variation of remaining terms in the right-hand side of (2.11) is much

easier. One has

lim
R1,...,Rg→P

∂λm

∑

α<β

ln E
(
Rα, Rβ

)
= 0, (2.34)

lim
R1,...,Rg→P

∂λm

g
∑

α=1

ln s
(
Rα, P

)
= 0 (2.35)

lim
R1,...,Rg→P

∂λm

g
∑

α=1

ln E
(
Q,Rα

)
= −

g

4

(
∂m ln

E
(
Q,Pm

)

E
(
P, Pm

)
)2

(2.36)

due to (2.16) and (2.18). Now using (2.11), summing up (2.18), (2.34)–(2.36), and (2.29),

cleverly rearranging the terms (as Fay does on [12, page 59 ]) and sending Q → Pm, we

get

∂λmC(P) =
1

4

∂2
mΘ

(
KP − AP

(
Pm

))

Θ
(
KP − AP

(
Pm

))

−
1

2
∂m ln Θ

(
KP − AP

(
Pm

))
∂m ln

[
s
(
Pm,Q0

)
Eg

(
Pm, P

)]

−
1

4
∂2

m ln E
(
Pm, P

)
+

1

2
∂m ln s

(
Pm,Q0

)
∂m ln E

(
Pm, P

)

+
2g − 1

4

(
∂m ln E

(
Pm, P

))2
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14 A. Kokotov and D. Korotkin

−
1

2

[
∂m ln E

(
Pm,Q

)( g
∑

α=1

∂zα ln Θ
(
KP − AP(Q)

)
vα

(
Pm

)

+ ∂m ln
[
s
(
Pm,Q0

)
Eg

(
Pm, P

)])

−
1

2

∂2
mE

(
Pm,Q

)

E
(
Pm,Q

)

−

g
∑

α,β=1

∂2
zαzβ

ln Θ
(
KP − AP

(
Pm

))
vα

(
Pm

)
vβ

(
Pm

)]

Q=Pm

.

(2.37)

Due to (2.3), one has

lim
Q→Pm

∂m ln E
(
Pm,Q

)
(

g
∑

α=1

∂zα ln Θ
(
KP − AP(Q)

)
vα

(
Pm

)

+ ∂m ln
[
s
(
Pm,Q0

)
Eg

(
Pm, P

)]
)

= lim
xm→0

1

xm

(
∂m ln

s
(
Pm,Q0

)
Eg

(
Pm, P

)

Θ
(
KP − A

(
Pm

))

+

g
∑

α,β=1

∂2
zαzβ

ln Θ
(
KP − AP

(
Pm

))
vα

(
Pm

)
vβ

(
Pm

)
xm + O

(
x2

m

))

=

g
∑

α,β=1

∂2
zαzβ

ln Θ
(
KP − AP

(
Pm

))
vα

(
Pm

)
vβ

(
Pm

)
,

(2.38)

where we made use of the fact that the function

R �−→

s
(
R,Q0

)
Eg

(
R, P

)

Θ
(
KP − AP(R)

) (2.39)

for fixed P is holomorphic and single-valued on L and, therefore, a constant (thus the

first term in the brackets vanishes). Using (2.3) we see that

lim
Q→Pm

∂2
mE

(
Pm,Q

)

E
(
Pm,Q

) = −
1

2
SB

(
xm

)
|xm=0. (2.40)

Thus, the last two lines of (2.37) simplify to −(1/8)SB(xm)|xm=0. Using the R-indepen-

dence of expression (2.39) once again, we may rewrite the first two lines of (2.37) as

1

4
∂2

m ln
[
s
(
Pm,Q0

)
E
(
Pm, P

)g−1]
−

1

4

(
∂m ln

[
s
(
Pm,Q0

)
E
(
Pm, P

)g−1])2
, (2.41)

which coincides with (1/8)SFay(xm)|xm=0 due to relation (2.28). Formula (2.19) is proved.

�
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 15

2.2 Dirichlet integral: variational formulas and holomorphic factorization

For the local parameter near the point at infinity ∞n in this section we will use the nota-

tion ζn := 1/λ, which is the same as the parameter xM+n from the introduction.

2.2.1 Definition of regularized Dirichlet integral. Let us cut the branched covering L

into N sheets by a family of contours connecting ramification points Pm; in addition, we

dissect it along all a-cycles. On each sheet of the covering L dissected in this way we can

define a real-valued function

ϕ(P) = ln

∣∣∣∣
ω(P)
dπ(P)

∣∣∣∣

2

. (2.42)

The difference of values of function ϕ on different sides of cycle aα equals 4πi(KP
α − KP

α).

The function ϕ is singular at all the points of the divisor D (i.e., ramification points

P1, . . . , PM and points at infinity ∞1, . . . ,∞N of the branch covering L) and at the point

P0. The derivative ∂λϕ (where λ = π(P)) is holomorphic outside of the singularities of the

function ϕ and does not change under tracing along the a-cycles.

Lemma 2.4. Projective connection (2.8) is related to function ϕ (2.42) everywhere out-

side of the divisor D as follows:

SP0
Fay(λ) = ϕλλ −

1

2
ϕ2

λ. (2.43)

�

The proof of this lemma is a simple standard computation.

In terms of the function ϕ we define M functions ϕint(xm), which are analytic in

corresponding neighbourhoods of the ramification points Pm, as follows:

eϕint(xm)
∣∣dxm

∣∣2 = eϕ(P)|dλ|2; (2.44)

in analogy to (2.43) we get SP0
Fay(xm) = ϕint

xmxm
− (1/2)(ϕint

xm
)2.

Similarly, in a neighbourhood of any point at infinity ∞n we define the function

ϕ∞ (ζn) of the local parameter ζn by the equality eϕ∞

|dζn|2 = eϕ|dλ|2. The projective

connection SP0
Fay in the parameter ζn coincides with ϕ∞

ζnζn
− (1/2)(ϕ∞

ζn
)2.

Using the interplay between the functions ϕ, ϕint and ϕ∞ , we find the following

asymptotics near the ramification points Pm and the poles ∞n:

∣∣ϕλ(P)
∣∣2 =

1

4

∣∣λ − λm

∣∣−2
+ O

(∣∣λ − λm

∣∣−3/2)
as P −→ Pm,

∣∣ϕλ(P)
∣∣2 = 4|λ|−2 + O

(
|λ|−3

)
as P −→ ∞n.

(2.45)
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16 A. Kokotov and D. Korotkin

At the zero P0 of the differential ω, one gets

∣∣ϕλ(P)
∣∣2 = 4(g − 1)2

∣∣λ − λ0

∣∣−2
+ O

(∣∣λ − λ0

∣∣−1)
as P −→ P0, (2.46)

where λ0 := π(P0).

These asymptotics enable us to introduce the following regularized Dirichlet in-

tegral:

D =
1

π
reg

∫

L

∣
∣ϕλ

∣
∣2d̂λ =

1

π
lim
ρ→0

{

Iρ + π
(
M + 8N + 8(g − 1)2

)
ln ρ

}

, (2.47)

where d̂λ = |dλ ∧ dλ|/2 and

Iρ =

N
∑

n=1

∫

L
(n)
ρ

∣∣ϕλ

∣∣2d̂λ. (2.48)

Here L
(n)
ρ is the subdomain of the nth sheet of covering L obtained by cutting off the

(small) discs of radius ρ centred at the ramification points and (if applicable) P0 from

the (large) disc {λ ∈ L(n) : |λ| < 1/ρ}.

2.2.2 Holomorphic factorization of Dirichlet integral. The following theorem shows

how to compute the Dirichlet integral (2.47) in terms of the local data at the points of

divisor D and points P0 and Q0.

Theorem 2.5. The regularized Dirichlet integral admits the following representation:

D = ln

∣∣∣∣
∣
σ4−4g

(
P0,Q0

) ∏M
m=1 ω

(
Pm

)

∏N
n=1 ω2

(
∞n

) exp
{

4πi
〈
r, KP0

〉}
∣∣∣∣
∣

2

− 2M ln 2, (2.49)

where vector r has integer components given by

2πrα := Var |aα

{

Arg
ω(P)
dπ(P)

}

. (2.50)�

Proof. Applying the Stokes theorem, we get

Iρ =
1

2i

{
M
∑

m=1

∮

Pm

+

N
∑

n=1

∮

∞n

+

∮

P0

+

g
∑

α=1

∫

a+
α∪a−

α

}

ϕλϕdλ. (2.51)

Here
∮

Pm
and

∮

P0
are integrals over clockwise-oriented circles of radius ρ around

the points Pm and P0 (it should be noted that each of the points Pm belongs to two sheets

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/doi/10.1155/IM
R

N
/2006/18746/658785 by C

oncordia U
niversity user on 01 M

ay 2022



Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 17

simultaneously and, therefore, the integration in
∫

Pm
goes over two circles). The

∮

∞n

denotes the integral over the counterclockwise-oriented circle of radius 1/ρ on the nth

sheet; a+
α and a−

α are different shores of the cycle aα with the opposite orientation. One

has the equality

1

2i

∫

a+
α∪a−

α

ϕλϕdλ = πrα ln
∣∣ exp 4πiKP0

α

∣∣2. (2.52)

We note that ϕλ = ∂λ ln(ω(P)/dπ(P)), where the function ω(P)/dπ(P) is single-valued

on the cycle aα; since the a-cycles are assumed not to contain the point P0, function

ω(P)/dπ(P) does not vanish on aα.

We have also

1

2i

∮

Pm

=
1

2i

∮

|xm|=
√

ρ

{

ϕint
xm

1

2xm
−

1

2x2
m

}

{

ϕint − 2 ln
∣∣xm

∣∣ − 2 ln 2
}

2xm dxm

= πϕint
(
xm

)
|xm=0 − 2π ln 2 − π ln ρ + o(1),

1

2i

∮

∞n

=
1

2i

∮

|λ|=1/ρ

{

− ϕ∞

ζn
λ−2 −

2

λ

}

{

ϕ∞ − 4 ln |λ|
}

dλ

= −2πϕ∞

(
ζn

)
|ζn=0 − 8π ln ρ + o(1),

1

2i

∮

P0

=
1

2i

∮

|λ−λ0|=ρ

ln
∣∣∣σ2

(
P0,Q0

)(
λ − λ0

)2g−2{

1+O
(
λ−λ0

)}∣∣∣
2
(

2g − 2

λ − λ0
+O(1)

)
dλ

= −π ln
∣∣σ4g−4

(
P0,Q0

)∣∣2 − 8π(g − 1)2 ln ρ + o(1)

(2.53)

as ρ → 0. These asymptotics together with (2.47) and (2.52) imply (2.49). �

2.2.3 Variational formulas for Dirichlet integral. From now on we assume that the pro-

jections π(P0) and π(Q0) of the points P0 and Q0 from (2.7) are independent of {λm}.

Theorem 2.6. The variation of the regularized Dirichlet integral D (2.47), (2.49) with re-

spect to branch points λm is given by values of projective connection (2.8) at the ramifi-

cation points Pm, that is,

∂D

∂λm
= SP0

Fay

(
xm(P)

)
|P=Pm , m = 1, . . . ,M. (2.54)

�

We start from the following.
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18 A. Kokotov and D. Korotkin

Lemma 2.7. On every sheet of the covering L, dissected in addition along all a- and b-

cycles, the derivatives of function ϕ(P) with respect to λ and λm are related as follows:

ϕλm + Fmϕλ +
(
Fm

)
λ

= 0, m = 1, . . . ,M, (2.55)

where functions Fm(P) are defined on the dissected covering L as follows:

Fm(P) = −
U(P)λm

U(P)λ
, (2.56)

and U(P) =
∫P

P0
ω. Near ramification points and points at infinity the functions Fm have

the following asymptotics:

Fm(P) = O
(
|λ|2

)
as P −→ ∞n,

Fm(P) = δlm + o(1) as P −→ Pl,
(2.57)

where δlm is the Kronecker symbol. �

The proof of relation (2.55) can be obtained by direct differentiation (one needs

to use the fact that the map U depends on {λm} holomorphically). The proof of the asymp-

totical behaviour of the functions Fm essentially repeats [19, Lemma 5].

Considering the exact differentials d((Fm)λϕ), d(Fmϕλϕ), d(Fmϕλ) and making

use of (2.55), we get the following.

Corollary 2.8. The following two 1-forms are exact:

{(
ϕλϕ

)
λm

dλ
}

−
{

Fm

∣∣ϕλ

∣∣2dλ +
(
Fm

)
λ
ϕλdλ

}

, (2.58)
{

Fm

∣∣ϕλ

∣∣2dλ −
(
Fm

)
λ
ϕλdλ +

(
Fm

)
λ
ϕλdλ

}

−
{

Fm

(
2ϕλλ − ϕ2

λ

)
dλ + ϕϕλλmdλ

}

.

(2.59)
�

Proof of Theorem 2.6 (the idea of this proof, including Lemma 2.7, goes back to [35]). By

(2.51) we get

∂Iρ

∂λm
=

1

2i

{ ∮

Pm

[(
ϕλϕ

)
λm

+
(
ϕλϕ

)
λ

]
dλ +

(
∑

l�=m

∮

Pl

+

N
∑

n=1

∮

∞n

+

∮

P0

)(
ϕλϕ

)
λm

dλ

}

+
1

2i

g
∑

α=1

∫

a+
α∪a−

α

(
ϕλϕ

)
λm

dλ.

(2.60)

(One may assume that the projections of basic cycles π(aα) are independent of {λm}.)
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 19

Using the holomorphy of (Fm)λϕλ and the relation (ϕλϕ)λdλ = d(ϕλϕ)−ϕλϕλdλ,

we rewrite the right-hand side of (2.60) as

1

2i

[

−

∮

Pm

|ϕλ|2dλ +

{
M
∑

l=1

∮

Pl

+

N
∑

n=1

∮

∞n

+

∮

P0

}

× {

Fm

∣∣ϕλ

∣∣2 −
(
Fm

)
λ
ϕλdλ +

(
Fm

)
λ
ϕλdλ

}

−

g
∑

α=1

[ ∫

a+
α∪a−

α

+

∫

b+
α∪b−

α

](
Fm

)
λ
ϕλdλ +

g
∑

α=1

∫

a+
α∪a−

α

(
ϕλϕ

)
λm

dλ

]

.

(2.61)

By means of the asymptotical expansions of the integrands at the ramification

points and points ∞n (the asymptotics from Lemma 2.7 play here a central role; cf. the

proof of Theorem 4 in [19]), one gets the relation

1

2i

{
M
∑

l=1

∮

Pl

+

N
∑

n=1

∮

∞n

}

{

Fm

∣
∣ϕλ

∣
∣2dλ −

(
Fm

)
λ
ϕλdλ +

(
Fm

)
λ
ϕλdλ

}

=
1

2i

∮

Pm

∣
∣ϕλ

∣
∣2dλ −

3π

4

M
∑

l=1

d2Fm
(
dxl

)2

∣∣
∣∣
xl=0

+ o(1)

(2.62)

as ρ → 0.

By (2.59) we have

1

2

∮

P0

Fm

∣∣ϕλ

∣∣2dλ −
(
Fm

)
λ
ϕλdλ +

(
Fm

)
λ
ϕλdλ =

1

2i

∮

P0

Fm

(
2ϕλλ −

(
ϕλ

)2)
dλ + o(1).

(2.63)

The Cauchy theorem, the asymptotical expansions at Pl and ∞n, and relation

(2.43) imply that

0 =
1

2i

{
M
∑

l=1

∮

Pl

+

N
∑

n=1

∮

∞n

+

∮

P0

+

g
∑

α=1

[ ∫

a+
α∪a−

α

+

∫

b+
α∪b−

α

]}

Fm

(
2ϕλλ −

(
ϕλ

)2)
dλ

= −
3π

4

M
∑

l=1

d2Fm
(
dxl

)2

∣∣
∣∣
xl=0

+ πSP0
Fay(xm)

∣∣
∣
xm=0

+
1

2i

{∮

P0

+

g
∑

α=1

[ ∫

a+
α∪a−

α

+

∫

b+
α∪b−

α

]}

Fm

(
2ϕλλ −

(
ϕλ

)2)
dλ + o(1)

(2.64)

(cf. [19, Lemma 6]). Observe that

∫

a+
α∪a−

α

(
ϕλϕ

)
λm

dλ =

∫

a+
α∪a−

α

[(
2ϕλλ −

(
ϕλ

)2)
Fm +

(
Fm

)
λ
ϕλ

]
dλ (2.65)
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20 A. Kokotov and D. Korotkin

due to (2.59) and an obvious equality

∫

a+
α∪a−

α

ϕϕλλmdλ = 0. (2.66)

Similarly,

∫

b+
α∪b−

α

[(
2ϕλλ −

(
ϕλ

)2)
Fm +

(
Fm

)
λ
ϕλ

]
dλ = 0 (2.67)

due to the equality

∂

∂λm

∫

b+
α∪b−

α

ϕλϕdλ = 0. (2.68)

To finish the proof it remains to collect together (2.60)–(2.64), and make use of the fact

that all o(1) in the above equalities are uniform with respect to (λ1, . . . , λM) belonging to

a compact neighbourhood of the initial point (λ0
1, . . . , λ0

M). �

2.3 Calculation of the tau-function

Theorem 2.9. The isomonodromic tau-function of Frobenius manifold structure on the

Hurwitz space Hg,N(1, . . . , 1) is given by the following expression, which is independent

of the choice of the points P0 and Q0:

τ−6 =

{

s
(
P0,Q0

)}2−2g
e2πi〈r,KP0 〉

C4
(
P0

)(
dπ

(
P0

))g−1

M+N
∏

k=1

{

s
(
Dk,Q0

)}dk
{

E
(
Dk, P0

)}(g−1)dk
, (2.69)

where the integer vector r is defined as follows:

A(D) + 2KP0 + Br + s = 0; (2.70)

the initial point of the Abel map coincides with P0 and all the paths are chosen inside the

same fundamental polygon L̂. �

Proof. Expression (2.69) is an immediate corollary of Theorems 2.5, 2.6 and formula

(2.19). The only thing one needs to check is the coincidence of the vector r defined by for-

mula (2.50) with the vector r defined by (2.70). This coincidence is easy to prove for g ≥ 2.

Namely, we know that (2.69), where the components of the vector r are given by (2.50),

gives the tau-function (1.3). Therefore, as P0 encircles the basic b-cycle, the tau-function

can only gain a {λm}-independent factor. Computing the monodromy of expression (2.69)

along cycle bα, we see that this implies (2.70) unless g−1 �= 0. For g = 1 the relation (2.69)

follows from the formula for the tau-function which was found in [19].
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 21

Now, since (2.70) is proved, we can show that expression (2.69) is independent of

P0 and Q0. Simple counting of tensor weight shows that expression (2.69) is a 0-differen-

tial with respect to each argument P0 and Q0, which is, moreover, free of singularities.

Due to relation (2.70) and multiplicative properties of the differentials C and s we can

also check that it is single-valued on L with respect to each of these arguments, and,

therefore, is independent of both of them. �

To transform expression (2.69) further to the form (1.8) we will use the following

two lemmas.

Lemma 2.10. The fundamental domain L̂ of the Riemann surface L can always be chosen

such that A(D) + 2KP = 0. �

Proof. For an arbitrary choice of the fundamental domain the vector A(D)+2KP coincides

with 0 on the Jacobian of the surface L, that is, there exist two integer vectors r and s

such that

A(D) + 2KP + Br + s = 0. (2.71)

Consider the point P1 ∈ D; according to our assumptions this is a simple zero of dπ. By

a smooth deformation of a cycle aα within a given homological class we can stretch it

in such a way that the point P1 crosses this cycle; two possible directions of this cross-

ing correspond to the jump of the component rα of the vector r to +1 or −1. Similarly, if

we deform a cycle bα in such a way that it gets crossed by the point P1, the component

sα of the vector s also jumps with +1 or −1 depending on the direction of the crossing.

Repeating such procedure, we get the fundamental domain where r = s = 0. �

From the proof it is clear that even a stronger statement is true: the choice of the

fundamental domain such that A(D) + 2KP = 0 is possible if at least one of the ramifica-

tion points is simple.

Lemma 2.11. Assume that the fundamental domain L̂ is chosen in such a way that

A(D) + 2KP = 0. (2.72)

Then for any two points P,Q ∈ L, the function s(P,Q) can be written as follows in terms

of prime forms:

s2(P,Q) =
dπ(P)
dπ(Q)

M+N
∏

k=1

(
E
(
Dk,Q

)

E
(
Dk, P

)
)dk

. (2.73)

�
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22 A. Kokotov and D. Korotkin

Proof. Consider the expression

(
dπ(P)

)1−g
C−2(P)

M+N
∏

k=1

Edk(g−1)(Dk, P
)
. (2.74)

Summing up the tensor weights of all ingredients of this expression, we see that this is

a 0-differential with respect to P. Moreover, it is single-valued under tracing along all

the basic cycles (this can be easily checked using multiplicative properties of the prime

forms and C(P)), and does not have either zeros or poles on L (the poles and zeros induced

by the prime forms are cancelled by the poles and zeros of dπ(P)). Therefore, expression

(2.74) is independent of the point P. Taking its ratio at arbitrary two points P and Q and

using expression (2.10) of s(P,Q) in terms of ratio of the differential C(P) at these two

points, we get (2.73). �

Now, choosing in formula (2.69) P0 = Q0 and expressing s(Dk, P0) in terms of the

prime forms using (2.73), we get expression (1.8) for the isomonodromic tau-function of

Hurwitz Frobenius manifolds stated in the introduction.

Remark 2.12. It is natural to expect that once the final expression (1.8) is known, the va-

lidity of equations (1.3) can be proved by a straightforward computation without using

the technique of variation and holomorphic factorization of the Dirichlet integral. Such

straightforward proof is indeed possible in the genus zero and genus one cases [22]; how-

ever, surprisingly enough, it seems to be more technical than the indirect proof using the

technique of Dirichlet integral. Therefore, although we believe that the direct proof ex-

ists also in the higher genus case, probably, it does not lead to a significant simplification

of the proof given here.

Remark 2.13. For the stratum H2,g(1, . . . , 1),which consists of hyperelliptic Riemann sur-

faces ν2 =
∏2g+2

j=1 (λ − λj) with M = 2g + 2 simple branch points, the tau-function τ was

computed in [16] in the following form:

τ = det A

2g+2
∏

j<k, j,k=1

(
λj − λk

)1/4
, (2.75)

where Aαβ =
∮

aα
(λβ−1/ν) is the matrix of a-periods of non-normalized holomorphic

Abelian differentials on L. To verify that expression (1.8) in hyperelliptic case gives rise

to (2.75) we need to use the representation (2.11) for the differential C(P), together with

the formula (2.73) for the differential s(P,Q) and assume that g+1 arbitrary points Q,R1,

. . . , Rg tend to g+1 different branch points (say, λ1, . . . , λg+1). The theta-function entering
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 23

(2.11) can be then computed via Thomae formula in terms of det A and pairwise differ-

ences of the branch points. The det ‖vα(Rβ)‖ is also easily represented in the same terms.

Collecting all appearing contributions, we arrive at (2.75).

2.3.1 Genus 1 case. The differential C(P) in elliptic case does not depend on P ([12, page

21]):

C = η3(B)e−πiB/4, (2.76)

where η(B) is the Dedekind eta-function. The differential s(P,Q) is given by

s(P,Q) = exp

{

πi

∫P

Q

v

} √
v(P)

√
v(Q)

. (2.77)

Substituting these expressions to (2.69) and taking into account (2.70), we get the fol-

lowing expression:

τ = η2(B)
M+N
∏

k=1

{

v
(
Dk

)}−dk/12
, (2.78)

where according to our usual conventions v(Dk) := v(P)/dxk(P)|P=Dk
, k = 1, . . . ,M + N.

This formula was independently proved in [19]; this confirms correctness of the choice of

integer r in (2.69) for g = 1.

2.4 Tau-function for an arbitrary stratum of Hurwitz space

Here we briefly consider the general case, when the critical points and poles of function

π(P) have arbitrary multiplicities. Such tau-function arises for general Hurwitz Frobe-

nius manifolds from [5] and in the problem of computation of the subleading term in the

large N expansion of the partition function in Hermitian two-matrix model [10] (in this

case the multiplicities of poles of π(P) can be arbitrary, and the branch points are sim-

ple). In the problem of computation of isomonodromic tau-function corresponding to

Riemann-Hilbert problem with arbitrary permutation monodromies [23] the multiplic-

ities of the critical points can be arbitrary. As before, denote the branch points of the

branched covering L by P1, . . . , PM and assume that they have multiplicities d1, . . . , dM;

the orders of the poles ∞1, . . . ,∞L of π we denote by dM+1 − 1, . . . , dM+L − 1, respectively.

One has N =
∑L

s=1 dM+s. Then divisor D := (dπ) can be formally written in the same form
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24 A. Kokotov and D. Korotkin

as before:

D =

M+L
∑

k=1

dkDk, (2.79)

where Dm := Pm, m = 1, . . . ,M and DM+s = ∞s, s = 1, . . . , L. The genus of the Riemann

surface L is given in this case by the formula

g =
1

2

M
∑

m=1

dm −

L
∑

s=1

dM+s + 1. (2.80)

The definition (1.3) generalises as follows:

∂

∂λm
ln τ = −

1

6
(
dm − 1

)
!
(
dm + 1

)
(

d

dxm(P)

)dm−1

SB

(
xm(P)

)∣∣
Pm=P

, m = 1, . . . ,M.

(2.81)

Compatibility of the system (2.81) follows from Schlesinger equations [23]; it was

checked directly in [19] using Rauch variational formulas. By using the same technique

as in the case of simple branch points and infinities, one can verify that the formula (1.8)

stated in the introduction remains valid in the general case after substitution of corre-

sponding multiplicities dk and genus g. We do not present the proof here since it does not

contain any new essential ideas in comparison with the case of simple poles and zeros.

3 Applications of the tau-function of Hurwitz Frobenius manifolds

3.1 G-function of Frobenius manifolds

Fix a stratum Hg,N(k1, . . . , kL) of Hurwitz space, for which all the critical points of func-

tion π(P) are simple, but infinities have arbitrary multiplicities k1, . . . , kL (for simple in-

finities all ks = 1). Then the divisor D (2.79) of the differential dπ looks as follows:

DFrob =

M
∑

m=1

Pm −

L
∑

s=1

(
ks + 1

)
∞s, (3.1)

that is, dm = 1 for m = 1, . . . ,M and dM+n = kn + 1 for n = 1, . . . , L. The structures of

Frobenius manifold on any Hurwitz space of this type were introduced by Dubrovin [5].

We refer to [5] or [24] and recent papers [28, 29] for definition of all ingredients (Frobe-

nius algebra, prepotential, canonical and flat coordinates, Darboux-Egoroff metrics, G-

function) of this construction. Here we will only discuss the G-function (genus one free
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 25

energy of Dijkgraaf and Witten),which gives a solution of Getzler equation (for classes of

Frobenius manifolds related to quantum cohomologies, the G-function is the generating

function of elliptic Gromov-Witten invariants).

Recall that each Frobenius structure on the Hurwitz space corresponds to a so-

called primary differential ϕ on the covering L. The arising Frobenius manifold will be

denoted by Mϕ. In [6, 8] it was found the following expression for the G-function of an

arbitrary semisimple Frobenius manifold:

G = ln

(
τI

J1/24

)
, (3.2)

where τI is the Dubrovin’s tau-function associated to an arbitrary semisimple Frobenius

manifold (in [5] τI is called the “isomonodromic tau-function,” although, as was shown in

[18], it is related to the original definition of Jimbo-Miwa, which we follow here, by τI =

τ−1/2); J is the Jacobian of the transformation from the flat to the canonical coordinates.

Using the known expression of Jacobian J in terms of diagonal coefficients of

Darboux-Egoroff metric (see, e.g., [6]), we get the following.

Theorem 3.1. The G-function of the Frobenius manifold Mϕ can be expressed as fol-

lows:

G = −
1

2
ln τ −

1

48

M
∑

m=1

ln ResPm

ϕ2

dλ
, (3.3)

where τ is the tau-function on the Hurwitz space Hg,N(k1, . . . , kL) given by (1.8), with the

divisor D given by (3.1). �

3.2 Genus one free energy of Hermitian two-matrix model

Another application of the tau-function (1.8) is in the theory of Hermitian one- and two-

matrix models [10]. Consider the partition function of Hermitian two-matrix model

e−N2F :=

∫

dM1dM2e−N tr{V1(M1)+V2(M2)−M1M2}, (3.4)

where the integration goes over all independent matrix entries of N×N Hermitian matri-

ces M1 and M2; V1 and V2 are two polynomial potentials (sometimes it is convenient to

consider V1 and V2 as infinite power series). The expansion F =
∑

∞

G=0 N−2GFG as N → ∞

(so-called “genus expansion”) plays an important role in the theory, since the coefficients

FG appear both in statistical physics (Ising model) as well as in enumeration of genus G
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26 A. Kokotov and D. Korotkin

graphs (see, e.g., [4]). If polynomials V1 and V2 are of even degree with positive leading

coefficients, then asymptotically, as N → ∞, the main contribution to the partition func-

tion (3.4) is given by the matrices whose eigenvalues are concentrated in a finite set of

intervals. The intervals filled by the eigenvalues of the matrix M1 lie around the minima

of the potential V1; the eigenvalues of the matrix M2 fill the intervals around the minima

of the potential V2.

The intervals supporting eigenvalues of matrices M1 and M2 correspond to the

so-called spectral algebraic curve L, defined by

(
V ′

1(x) − y
)(

V ′
2(y) − x

)
− P0(x, y) + 1 = 0, (3.5)

where the polynomial of two variables P0(x, y) is the zeroth-order term in 1/N2 expan-

sion of the polynomial

P(x, y) :=
1

N

〈

tr
V ′

1(x) − V ′
1

(
M1

)

x − M1

V ′
2(y) − V ′

2

(
M2

)

y − M2

〉

; (3.6)

(the notation 〈Q(M1,M2)〉 is used to define the expectation value of any functional Q of

the matrices M1 and M2 with respect to the integration measure in (3.4)). The branch

cuts of the spectral curve L corresponding to projection of L on the x-plane coincide

with the intervals supporting eigenvalues of M1 in the limit N → ∞; the branch cuts

corresponding to projection of L on y-plane are the intervals supporting the eigenvalues

of M2.

The equations for derivatives of the functions FG with respect to coefficients of

polynomials V1,2 arise as a corollary of a reparametrization invariance of the matrix in-

tegral (3.4) (the so-called “loop equations”). In particular, the formula for the leading

order term F0 (“genus zero free energy”) in terms of standard holomorphic objects associ-

ated to the spectral curve L was derived in [1]. Results of [1], together with [2], show, that

F0 satisfies so-called generalised WDVV equations, together with a quasi-homogeneity

equation, thus indicating the existence of a close link between the large N limit of Her-

mitian matrix models and the theory of Frobenius manifolds. Further confirmation of

this link was obtained in [10] where it was shown that the genus one contribution F1 to

the free energy is given by the formula

F1 =
1

2
ln τ +

1

48
ln

{

(
vd2+1

)1−1/d2

M
∏

m=1

res

∣∣∣∣
Pm

(dy)2

dx

}

+ C, (3.7)

where vd2+1 is the highest order coefficient of the polynomial V2; P1, . . . , PM are zeros

of the differential dx on the spectral curve (i.e., the branch points of the spectral curve
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 27

realized as a covering of the x-plane), which are assumed to be simple; τ is the isomon-

odromic tau-function of a Hurwitz Frobenius manifold associated to the spectral curve

(3.5). The formula (1.8) proved in this paper gives an explicit expression for the genus

one free energy (3.7). The one-matrix model appears when the degree of polynomial V2

equals 2; in this case the spectral curve (3.5) is hyperelliptic.

A surprising similarity of the expression for the G-function (3.3) of Hurwitz

Frobenius manifolds with the expression for the genus one free energy (3.7) of Hermitian

two-matrix models is an additional evidence of existence of a close link between Hermit-

ian matrix models and 2d topological field theories.

3.3 Determinant of Laplacian in Poincaré metric

Here we consider an application of the tau-function (1.8) to computation of the determi-

nants of Laplacians on Riemann surface in the Poincaré metric (in the trivial line bun-

dle); such determinants are defined in terms of the corresponding ζ-functions as follows:

det Δ := exp{−ζ ′
Δ(0)}. For elliptic case and the flat metric |v|2 (where v is holomorphic nor-

malized differential) this determinant is given by the Ray-Singer formula (see [27] and

formula (3.13) below). Such explicit formula is absent for g > 1 for Poincaré metric, al-

though variational formulas for det Δ with respect to the moduli of the Riemann surface

are well-known (see, e.g., [34] or [12] (formulae (5.4) and (4.58))). As it was shown in [19],

these formulas imply the following expression for the derivative of det Δ with respect to

a simple branch point of the covering L:

∂

∂λm

{

det Δ

det �B

}

= −
1

12

(
SB − SFuchs

)(
Pm

)
, (3.8)

where SB is the Bergman projective connection, and SFuchs(P) := {z(P), x(P)} is the Fuch-

sian projective connection on L, where z(P) if the Fuchsian uniformization coordinate;

x(P) is a local parameter.

Using this variational formula, in [19] it was obtained a formula which expresses

det Δ in terms of the tau-function of Hurwitz Frobenius manifolds. To formulate the the-

orem which combines this result with formula (1.8) we need to introduce a few new ob-

jects.

Let all the critical points and poles of the function π be simple (this is sufficient

for computation of det Δ since on any Riemann surface we can find a meromorphic func-

tion with these properties). For g > 1 the Riemann surface L is biholomorphically equiv-

alent to the quotient space H/Γ , where H = {z ∈ C : �z > 0}; Γ is a strictly hyperbolic

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/doi/10.1155/IM
R

N
/2006/18746/658785 by C

oncordia U
niversity user on 01 M

ay 2022



28 A. Kokotov and D. Korotkin

Fuchsian group. Denote by πF : H → L the natural projection. Let x be a local parameter

on L. Introduce the standard metric of the constant curvature −1 on L:

eχ|dx|2 =
|dz|2

|�z|2
, (3.9)

where z ∈ H, πF(z) = P, x = x(P).

In complete analogy to constructions of Section 2.2.1, introduce the real-valued

functions χ(λ), χint(xm), m = 1, . . . ,M and χ∞

n (ζn), n = 1, . . . ,N by specifying the local

parameter x = λ, x = xm, and x = ζn (in a neighbourhood of the point at infinity of the

nth sheet) in (3.9), respectively.

Consider domain L
(n)
ρ of L as in the integrals (2.48). (Recall that the domain L

(n)
ρ

is obtained from the nth sheet of L by deleting small discs around ramification points

belonging to this sheet, and the disc around infinity.)

Define the regularized Dirichlet integral analogous to (2.47):

DF :=
1

π
lim
ρ→0

(
N

∑

n=1

∫

L
(n)
ρ

∣∣∂λχ
∣∣2d̂λ + (8N + M)π ln ρ

)

. (3.10)

Define the function SF by

SF

(
λ1, . . . , λM

)
= −

1

12
DF −

1

6

M
∑

m=1

χint
(
xm

)
∣∣∣
∣
xm=0

+
1

3

N
∑

n=1

χ∞

n

(
ζn

)
∣∣∣
∣
ζn=0

. (3.11)

Now we are in a position to formulate the following.

Theorem 3.2. Consider the Hurwitz space Hg,N(1, . . . , 1). Let the pair (L, π) belong to

Hg,N(1, . . . , 1). Then the determinant of the Laplace operator on L (acting in the trivial

line bundle) in Poincaré metric is given by the following expression:

det Δ = cg,N{det �B}eSF |τ|2, (3.12)

where cg,N is a constant independent of the point (L, π) ∈ Hg,N(1, . . . , 1); B is the ma-

trix of b-periods on L; τ is the isomonodromic tau-function of Frobenius structure on

Hg,N(1, . . . , 1) given by (1.8). �

The formula (3.12) can be considered as a natural generalisation of the Ray-Singer

formula for the determinant of Laplacian on the torus with flat metric and periods 1
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 29

and σ [27]:

det Δ = C|�σ|2
∣∣η(σ)

∣∣4, (3.13)

where η is the Dedekind eta-function. The important feature of (3.13) is that the function

det Δ

{�σ}
{

Area(L)
} (3.14)

is represented as the modulus square of a holomorphic function on the moduli space.

This is not the case for the higher genus formula (3.12) due to the presence of the factor

eSF , which does not admit the holomorphic factorization, since the second-order holo-

morphic-antiholomorphic derivatives of the logarithm of this function are nontrivial [12,

34].

Actually, more natural higher genus analog of the Ray-Singer formula (3.13) is

given by the determinant of Laplacian computed in Strebel metrics (flat metrics with

conic singularities), which are given by the modulus of holomorphic quadratic differen-

tial (or, in particular, by the modulus square of a holomorphic Abelian differential) [21].

3.4 Riemann-Hilbert problems with quasi-permutation monodromies and

isomonodromic tau-function

The Riemann-Hilbert problem of construction of GL(N)-valued function on the univer-

sal covering of punctured Riemann sphere CP1\{λ1, . . . , λM} with prescribed monodromy

representation in general case (for an arbitrary representation) cannot be solved in terms

of known special functions. For an arbitrary quasi-permutation monodromy group (i.e.,

such that each monodromy matrix has exactly one nonvanishing entry in each of its

columns and each of its rows), the RH problem was solved in [23] outside of a divisor

in the space of monodromy data (the so-called Malgrange divisor, or the divisor of ze-

ros of the Jimbo-Miwa tau-function) following previous works [3, 16], where the 2 × 2

case was solved. One usually requires the solution Ψ of the Riemann-Hilbert problem to

be normalized to the unit matrix at some point λ0 ∈ CP1, which does not coincide with

singularities {λm}; we will denote such normalized solution by Ψ(λ, λ0).

Theorem 3.3 [23]. Let the set of the monodromy data lie outside of the Malgrange di-

visor. Then the solution Ψ(λ, λ0) of an arbitrary Riemann-Hilbert problem with quasi-

permutation monodromy representation is given by the analytical continuation on uni-

versal covering of the punctured sphere of the following expression defined in a neigh-

bourhood of the normalization point (all objects in this formula correspond to the
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30 A. Kokotov and D. Korotkin

N-sheeted branched covering L, associated with the quasi-permutation monodromy rep-

resentation):

Ψkj

(
λ0, λ

)
=

λ − λ0√
dλdλ0

Θ
[

p
q

](
A

(
λ(j)

)
− A

(
λ

(k)
0

)
+ Ω

)

Θ
[

p
q

]
(Ω)E

(
λ(j), λ

(k)
0

)
M
∏

m=1

N
∏

l=1

[
E
(
λ(j), λ

(l)
m

)

E
(
λ

(k)
0 , λ

(l)
m

)

]r(l)
m

,

(3.15)

where

Ω :=

M
∑

m=1

N
∑

j=1

r(j)
mA

(
λ(j)

m

)
; (3.16)

λ(k) denotes the point of L which belongs to the kth sheet and has projection λ on CP1;

p,q ∈ C
g are constant vectors; r(k)

m are constants assigned to all points from π−1(λm) (if

two points from π−1(λm) coincide, the constants r
(k)
m are assumed to coincide, too). The

logarithms of the matrix elements of monodromy matrices are linear functions of the

constants p, q and r
(k)
m . The Malgrange divisor is defined by Θ[ p

q ](Ω) = 0. �

If the elements of monodromy matrices (or, equivalently, the constants p, q and

r
(k)
m ) are independent of positions of singularities {λm}, function Ψ defines a solution of

the Schlesinger system, together with isomonodromic tau-function of Jimbo-Miwa [15],

defined as follows:

∂

∂λm
ln τ1 =

1

2
res

∣∣∣∣
λ=λm

tr
(
ΨλΨ−1

)2
. (3.17)

In [23] it was proved the following.

Theorem 3.4. The Jimbo-Miwa tau-function corresponding to solution (3.15) of the

Riemann-Hilbert problem is given by the following formula:

τ1 = τ−1/2
M
∏

m,l=1

(
λm − λl

)rml
Θ

[
p
q

](
Ω | B

)
, (3.18)

where τ is the tau-function defined by (1.3);

rmn =

N
∑

k=1

r(k)
m r(k)

n . (3.19)

�

This theorem, together with expression (1.8) derived in this paper, gives the ex-

plicit formula for Jimbo-Miwa tau-function corresponding to general Riemann-Hilbert

problem with quasi-permutation monodromies. For monodromy groups corresponding
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Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds 31

to hyperelliptic curves this tau-function was found in [16]; for ZN curves with N > 2 it

was computed in [9].

We notice that the monodromy groups corresponding to Fuchsian Riemann-

Hilbert problems of Hurwitz Frobenius manifolds are not known explicitly, in contrast

to monodromy groups corresponding to solutions (3.15). Therefore, one of the natural

next problems is to find the monodromy group and the solution of the Riemann-Hilbert

problem which correspond to the tau-function (1.8).

Remark 3.5. If we put all constants rmn = 0, the formula (3.18) relating the Jimbo-

Miwa tau-function of Hurwitz Frobenius manifolds with Jimbo-Miwa tau-function of

Riemann-Hilbert problem with quasi-permutation monodromies turns into

τ1 = τ−1/2Θ

[
p

q

]
(
0 | B

)
. (3.20)

This formula should be compared with the empirical formula derived by physicists in the

1980’s (see [17] and references therein) relating the determinant of ∂ operator acting in

the trivial line bundle (denoted by det ∂0) and the determinant of ∂ operator acting in the

tensor product of a spin line bundle with the flat line bundle defined by the monodromy

factors e2πipα and e−2πiqα along the canonical cycles aα and bα (this determinant is de-

noted by det ∂p,q). Both of these determinants were not rigorously defined in physics lit-

erature; however, an empirical analysis of these objects leads to the following relation

(see [17, (2.27)]):

det ∂p,q =
{

det ∂0

}−1/2
Θ

[
p

q

]
(
0 | B

)
. (3.21)

The formula (3.20) gives one of possible rigorous correspond to the formula (3.21) if one

identifies det ∂p,q with τ1 and det ∂0 with τ (since τ1 and τ can be viewed as sections of

appropriate line bundles over a covering of the Hurwitz space [19], this gives the link

between the line bundles).

Remark 3.6. Another object which has natural interpretation of det ∂0 is the Zograf’s F-

function on Schottky space [32, 33]. The function F can be viewed as a natural higher

genus generalization of Dedekind’s η-function defined on the Schottky space (actually,

as can be seen from (1.8), (1.9), the tau-function τ can be viewed as a natural higher

genus analog of the Dedekind’s η-function associated to Hurwitz spaces). In [19, (4.64)]

a link between |F|2 and |τ|2 was found in the form of an appropriate Dirichlet integral.

Unfortunately, at the moment we do not know how to perform explicitly the holomorphic
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32 A. Kokotov and D. Korotkin

factorization of this Dirichlet integral to get a link between F and τ themselves. A com-

plete understanding of this link might allow to express the function F in terms of theta-

functions.
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